Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339099

ABSTRACT

A cell's ability to secrete extracellular vesicles (EVs) for communication is present in all three domains of life. Notably, Gram-negative bacteria produce a specific type of EVs called outer membrane vesicles (OMVs). We previously observed the presence of OMVs in human blood, which could represent a means of communication from the microbiota to the host. Here, in order to investigate the possible translocation of OMVs from the intestine to other organs, the mouse was used as an animal model after OMVs administration. To achieve this, we first optimized the signal of OMVs containing the fluorescent protein miRFP713 associated with the outer membrane anchoring peptide OmpA by adding biliverdin, a fluorescence cofactor, to the cultures. The miRFP713-expressing OMVs produced in E. coli REL606 strain were then characterized according to their diameter and protein composition. Native- and miRFP713-expressing OMVs were found to produce homogenous populations of vesicles. Finally, in vivo and ex vivo fluorescence imaging was used to monitor the distribution of miRFP713-OMVs in mice in various organs whether by intravenous injection or oral gavage. The relative stability of the fluorescence signals up to 3 days post-injection/gavage paves the way to future studies investigating the OMV-based communication established between the different microbiotas and their host.


Subject(s)
Escherichia coli , Extracellular Vesicles , Animals , Mice , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Tissue Distribution , Extracellular Vesicles/metabolism , Intestines , Gram-Negative Bacteria/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism
2.
Oncotarget ; 9(19): 14993-15000, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29599920

ABSTRACT

Myelodysplastic syndromes (MDS) are oligoclonal disorders of the hematopoietic stem cells (HSC). Recurrent gene mutations are involved in the MDS physiopathology along with the medullar microenvironment. To better study the heterogeneity of MDS, it is necessary to create patient derived xenograft (PDX). We have reproduced a PDX model by xenografting HSC (CD34+) and mesenchymal stromal cells (MSC) in NOD/SCID/IL2rγ-/- mice with primary samples from one RAEB2, two RAEB1 and one RARS patients harboring karyotype abnormalities and gene mutations. The average human chimerisms ranged from 59.7% to 0.0175% for the 4 patients. Secondary grafts (G2) were only performed for mice derived from the RAEB2 patient and the average human chimerism was 53.33%. G1 mice 1 and 2, and their derived G2 mice showed less than 20% of medullar blasts whereas mouse 3 and the resulting G2 mice transformed to AML. Clonal architecture was dissected in the different hematopoietic progenitors (HP) harvested from G1 and G2 mice. By direct Sanger sequencing, we found the 4 initial mutations in each HP subpopulation and those mutations had the same variant allele frequency in the CD34+ CD38- HSC from G1 and G2 mice by next generation sequencing (NGS). Targeted NGS analysis done in HSC of mouse 3 did not show any additional driver gene mutations explaining the transformation to AML. To conclude, we have generated a PDX mouse model that perfectly reproduces the MDS founder clone which is stable over time, allowing us to consider this system as a powerful tool to test therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...