Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(20): 24186-24196, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37167266

ABSTRACT

This work combines the wound-healing-related properties of the host defense peptide KR-12 with wood-derived cellulose nanofibrils (CNFs) to obtain bioactive materials, foreseen as a promising solution to treat chronic wounds. Amine coupling through carbodiimide chemistry, thiol-ene click chemistry, and Cu(I)-catalyzed azide-alkyne cycloaddition were investigated as methods to covalently immobilize KR-12 derivatives onto CNFs. The effects of different coupling chemistries on the bioactivity of the KR12-CNF conjugates were evaluated by assessing their antibacterial activities against Escherichia coli and Staphylococcus aureus. Potential cytotoxic effects and the capacity of the materials to modulate the inflammatory response of lipopolysaccharide (LPS)-stimulated RAW 245.6 macrophages were also investigated. The results show that KR-12 endowed CNFs with antibacterial activity against E. coli and exhibited anti-inflammatory properties and those conjugated by thiol-ene chemistry were the most bioactive. This finding is attributed to a favorable peptide conformation and accessibility (as shown by molecular dynamics simulations), driven by the selective chemistry and length of the linker in the conjugate. The results represent an advancement in the development of CNF-based materials for chronic wound care. This study provides new insights into the effect of the conjugation chemistry on the bioactivity of immobilized host defense peptides, which we believe to be of great value for the use of host defense peptides as therapeutic agents.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Staphylococcus aureus , Chemical Phenomena
2.
Cell Mol Life Sci ; 79(8): 411, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35821354

ABSTRACT

The increasing antibiotic resistance among uropathogenic bacteria warrants alternative therapeutic strategies. We demonstrate the potential of the synthetic peptide CD4-PP, designed by dimerization and backbone cyclization of the shortest antimicrobial region of human cathelicidin, LL-37. CD4-PP is active against clinical and type strains of common uropathogens Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa at concentrations substantially below cellular cytotoxic levels and induced membrane deformation and leakage in E. coli and P. aeruginosa. Furthermore, CD4-PP treatment prevented the formation of new biofilm and dissolved mature biofilm created by E. coli and P. aeruginosa and targeted curli amyloid in E. coli biofilms. In addition, CD4-PP also induced production of LL-37 by uroepithelial cells and increased the expression of tight junction proteins claudin-14 and occludin. During uroepithelial cell infection, CD4-PP significantly reduced uropathogen survival when treatment was given at the start of infection. Low micromolar of CD4-PP treatment initiated after 2 h was successful with all tested species, except P. aeruginosa where CD4-PP was unable to reduce survival, which could be attributed by early biofilm formation. Finally, we demonstrated that urinary catheter pieces coated with saline fluid supplemented with CD4-PP reduced the attachment of E. coli, giving it a potential clinical application.


Subject(s)
Antimicrobial Peptides , Escherichia coli , Biofilms , Humans , Klebsiella pneumoniae , Pseudomonas aeruginosa
3.
Polymers (Basel) ; 13(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451171

ABSTRACT

There is currently a huge need for new, improved therapeutic approaches for the treatment of chronic wounds. One promising strategy is to develop wound dressings capable of modulating the chronic wound environment (e.g., by controlling the high levels of reactive oxygen species (ROS) and proteases). Here, we selected the thiol-containing amino acid cysteine to endow wood-derived cellulose nanofibrils (CNF) with bioactivity toward the modulation of ROS levels and protease activity. Cysteine was covalently incorporated into CNF and the functionalized material, herein referred as cys-CNF, was characterized in terms of chemical structure, degree of substitution, radical scavenging capacity, and inhibition of protease activity. The stability of the thiol groups was evaluated over time, and an in vitro cytotoxicity study with human dermal fibroblasts was performed to evaluate the safety profile of cys-CNF. Results showed that cys-CNF was able to efficiently control the activity of the metalloprotease collagenase and to inhibit the free radical DPPH (1,1-Diphenyl-2-picrylhydrazyl radical), activities that were correlated with the presence of free thiol groups on the nanofibers. The stability study showed that the reactivity of the thiol groups challenged the bioactivity over time. Nevertheless, preparing the material as an aerogel and storing it in an inert atmosphere were shown to be valid approaches to increase the stability of the thiol groups in cys-CNF. No signs of toxicity were observed on the dermal fibroblasts when exposed to cys-CNF (concentration range 0.1-0.5 mg/mL). The present work highlights cys-CNF as a promising novel material for the development of bioactive wound dressings for the treatment of chronic wounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...