Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Commun Biol ; 6(1): 452, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095219

ABSTRACT

Familial hypercholesterolemia (FH) patients suffer from excessively high levels of Low Density Lipoprotein Cholesterol (LDL-C), which can cause severe cardiovascular disease. Statins, bile acid sequestrants, PCSK9 inhibitors, and cholesterol absorption inhibitors are all inefficient at treating FH patients with homozygous LDLR gene mutations (hoFH). Drugs approved for hoFH treatment control lipoprotein production by regulating steady-state Apolipoprotein B (apoB) levels. Unfortunately, these drugs have side effects including accumulation of liver triglycerides, hepatic steatosis, and elevated liver enzyme levels. To identify safer compounds, we used an iPSC-derived hepatocyte platform to screen a structurally representative set of 10,000 small molecules from a proprietary library of 130,000 compounds. The screen revealed molecules that could reduce the secretion of apoB from cultured hepatocytes and from humanized livers in mice. These small molecules are highly effective, do not cause abnormal lipid accumulation, and share a chemical structure that is distinct from any known cholesterol lowering drug.


Subject(s)
Anticholesteremic Agents , Homozygous Familial Hypercholesterolemia , Hyperlipoproteinemia Type II , Induced Pluripotent Stem Cells , Humans , Animals , Mice , Proprotein Convertase 9/genetics , Proprotein Convertase 9/pharmacology , Proprotein Convertase 9/therapeutic use , Cholesterol, LDL , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/genetics , Anticholesteremic Agents/pharmacology , Apolipoproteins B/genetics , Apolipoproteins B/pharmacology , Apolipoproteins B/therapeutic use , Hepatocytes
3.
Genes (Basel) ; 13(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35456379

ABSTRACT

Serving as the metabolic hub of the human body, the liver is a vital organ that performs a variety of important physiological functions. Although known for its regenerative potential, it remains vulnerable to a variety of diseases. Despite decades of research, liver disease remains a leading cause of mortality in the United States with a multibillion-dollar-per-year economic burden. Prior research with model systems, such as primary hepatocytes and murine models, has provided many important discoveries. However, progress has been impaired by numerous obstacles associated with these models. In recent years, induced pluripotent stem cell (iPSC)-based systems have emerged as advantageous platforms for studying liver disease. Benefits, including preserved differentiation and physiological function, amenability to genetic manipulation via tools such as CRISPR/Cas9, and availability for high-throughput screening, make these systems increasingly attractive for both mechanistic studies of disease and the identification of novel therapeutics. Although limitations exist, recent studies have made progress in ameliorating these issues. In this review, we discuss recent advancements in iPSC-based models of liver disease, including improvements in model system construction as well as the use of high-throughput screens for genetic studies and drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Liver Diseases , Animals , Cell Differentiation , Drug Discovery , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Liver Diseases/drug therapy , Liver Diseases/genetics , Liver Diseases/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL