Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114174, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38700982

ABSTRACT

Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.


Subject(s)
Breast Neoplasms , Chromatin , Histone-Lysine N-Methyltransferase , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Chromatin/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methylation/drug effects , Cell Line, Tumor , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Receptors, Estrogen/metabolism , Gene Expression Regulation, Neoplastic/drug effects
2.
Cancer Res ; 82(20): 3668-3670, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36245246

ABSTRACT

Invasive lobular carcinomas (ILC) are the second most common histologic subtype of breast cancer, accounting for up to 15% of cases. ILC is estrogen receptor (ER) positive, yet its biology is distinct from invasive ductal carcinomas (IDC), and retrospective analyses have indicated a poorer outcome with endocrine therapy. In this issue of Cancer Research, Nardone and colleagues investigated the mechanisms of this differential therapy response in ILC, which cannot be solely explained by the genetic profile of these tumors. The authors conducted a thorough examination of the epigenome of ILC compared with IDC in clinical and preclinical models and revealed an alternative chromatin accessibility state in ILC driven by the pioneer factor FOXA1. FOXA1 regulates its own expression in a feed-forward mechanism by binding to an ILC-unique FOXA1 enhancer site. This results in a FOXA1-ER axis that promotes the transcription of genes associated with tumor progression and tamoxifen resistance. Targeting the FOXA1 enhancer region blocks this transcriptional program and inhibits ILC proliferation. These results shed light on a new epigenetic mechanism driving ILC tumor progression and treatment resistance, which may have profound therapeutic implications. See related article by Nardone et al., p. 3673.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/drug therapy , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Chromatin/genetics , Drug Resistance, Neoplasm/genetics , Female , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Retrospective Studies , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
3.
Cancer Res ; 82(12): 2269-2280, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35442400

ABSTRACT

The phosphoinositide 3-kinase (PI3K) pathway regulates proliferation, survival, and metabolism and is frequently activated across human cancers. A comprehensive elucidation of how this signaling pathway controls transcriptional and cotranscriptional processes could provide new insights into the key functions of PI3K signaling in cancer. Here, we undertook a transcriptomic approach to investigate genome-wide gene expression and transcription factor activity changes, as well as splicing and isoform usage dynamics, downstream of PI3K. These analyses uncovered widespread alternatively spliced isoforms linked to proliferation, metabolism, and splicing in PIK3CA-mutant cells, which were reversed by inhibition of PI3Kα. Analysis of paired tumor biopsies from patients with PIK3CA-mutated breast cancer undergoing treatment with PI3Kα inhibitors identified widespread splicing alterations that affect specific isoforms in common with the preclinical models, and these alterations, namely PTK2/FRNK and AFMID isoforms, were validated as functional drivers of cancer cell growth or migration. Mechanistically, isoform-specific splicing factors mediated PI3K-dependent RNA splicing. Treatment with splicing inhibitors rendered breast cancer cells more sensitive to the PI3Kα inhibitor alpelisib, resulting in greater growth inhibition than alpelisib alone. This study provides the first comprehensive analysis of widespread splicing alterations driven by oncogenic PI3K in breast cancer. The atlas of PI3K-mediated splicing programs establishes a key role for the PI3K pathway in regulating splicing, opening new avenues for exploiting PI3K signaling as a therapeutic vulnerability in breast cancer. SIGNIFICANCE: Transcriptomic analysis reveals a key role for the PI3K pathway in regulating RNA splicing, uncovering new mechanisms by which PI3K regulates proliferation and metabolism in breast cancer. See related commentary by Claridge and Hopkins, p. 2216.


Subject(s)
Breast Neoplasms , Phosphatidylinositol 3-Kinases , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Humans , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , RNA Splicing/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL