Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Fluids Barriers CNS ; 20(1): 61, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596666

ABSTRACT

BACKGROUND: Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF), leading to ventriculomegaly. Hydrocephalus may be primary or secondary to traumatic brain injury, infection, or intracranial hemorrhage. Regardless of cause, current treatment involves surgery to drain the excess CSF. Importantly, there are no long-term, effective pharmaceutical treatments and this represents a clinically unmet need. Many forms of hydrocephalus involve dysregulation in water and electrolyte homeostasis, making this an attractive, druggable target. METHODS: In vitro, a combination of electrophysiological and fluid flux assays was used to elucidate secretory transepithelial electrolyte and fluid flux in a human cell culture model of the choroid plexus epithelium and to determine the involvement of serum-, glucocorticoid-induced kinase 1 (SGK1). In vivo, MRI studies were performed in a genetic rat model of hydrocephalus to determine effects of inhibition of SGK1 with a novel inhibitor, SI113. RESULTS: In the cultured cell line, SI113 reduced secretory transepithelial electrolyte and fluid flux. In vivo, SI113 blocks the development of hydrocephalus with no effect on ventricular size of wild-type animals and no overt toxic effects. Mechanistically, the development of hydrocephalus in the rat model involves an increase in activated, phosphorylated SGK1 with no change in the total amount of SGK1. SI113 inhibits phosphorylation with no changes in total SGK1 levels in the choroid plexus epithelium. CONCLUSION: These data provide a strong preclinical basis for the use of SGK1 inhibitors in the treatment of hydrocephalus.


Subject(s)
Brain Injuries, Traumatic , Hydrocephalus , Humans , Animals , Rats , Glucocorticoids , Hydrocephalus/drug therapy , Phosphorylation , Biological Transport
2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37047646

ABSTRACT

Hydrocephalus is a devastating condition characterized by excess cerebrospinal fluid (CSF) in the brain. Currently, the only effective treatment is surgical intervention, usually involving shunt placement, a procedure prone to malfunction, blockage, and infection that requires additional, often repetitive, surgeries. There are no long-term pharmaceutical treatments for hydrocephalus. To initiate an intelligent drug design, it is necessary to understand the biochemical changes underlying the pathology of this chronic condition. One potential commonality in the various forms of hydrocephalus is an imbalance in fluid-electrolyte homeostasis. The choroid plexus, a complex tissue found in the brain ventricles, is one of the most secretory tissues in the body, producing approximately 500 mL of CSF per day in an adult human. In this manuscript, two key transport proteins of the choroid plexus epithelial cells, transient receptor potential vanilloid 4 and sodium, potassium, 2 chloride co-transporter 1, will be considered. Both appear to play key roles in CSF production, and their inhibition or genetic manipulation has been shown to affect CSF volume. As with most transporters, these proteins are regulated by kinases. Therefore, specific kinase inhibitors are also potential targets for the development of pharmaceuticals to treat hydrocephalus.


Subject(s)
Hydrocephalus , Humans , Adult , Hydrocephalus/metabolism , Cerebral Ventricles/metabolism , Choroid Plexus/metabolism , Epithelial Cells/metabolism , Treatment Outcome , Carrier Proteins/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982349

ABSTRACT

Over the years, several studies have shown that kinase-regulated signaling pathways are involved in the development of rare genetic diseases. The study of the mechanisms underlying the onset of these diseases has opened a possible way for the development of targeted therapies using particular kinase inhibitors. Some of these are currently used to treat other diseases, such as cancer. This review aims to describe the possibilities of using kinase inhibitors in genetic pathologies such as tuberous sclerosis, RASopathies, and ciliopathies, describing the various pathways involved and the possible targets already identified or currently under study.


Subject(s)
TOR Serine-Threonine Kinases , Tuberous Sclerosis , Humans , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Tuberous Sclerosis/drug therapy , Tuberous Sclerosis/genetics
4.
Eur J Med Res ; 27(1): 168, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050779

ABSTRACT

Hydrocephalus is a serious condition that affects patients of all ages, resulting from a multitude of causes. While the etiologies of hydrocephalus are numerous, many of the acute and chronic symptoms of the condition are shared. These symptoms include disorientation and pain (headaches), cognitive and developmental changes, vision and sleep disturbances, and gait abnormalities. This collective group of symptoms combined with the effectiveness of CSF diversion as a surgical intervention for many types of the condition suggest that the various etiologies may share common cellular and molecular dysfunctions. The incidence rate of pediatric hydrocephalus is approximately 0.1-0.6% of live births, making it as common as Down syndrome in infants. Diagnosis and treatment of various forms of adult hydrocephalus remain understudied and underreported. Surgical interventions to treat hydrocephalus, though lifesaving, have a high incidence of failure. Previously tested pharmacotherapies for the treatment of hydrocephalus have resulted in net zero or negative outcomes for patients potentially due to the lack of understanding of the cellular and molecular mechanisms that contribute to the development of hydrocephalus. Very few well-validated drug targets have been proposed for therapy; most of these have been within the last 5 years. Within the last 50 years, there have been only incremental improvements in surgical treatments for hydrocephalus, and there has been little progress made towards prevention or cure. This demonstrates the need to develop nonsurgical interventions for the treatment of hydrocephalus regardless of etiology. The development of new treatment paradigms relies heavily on investment in researching the common molecular mechanisms that contribute to all of the forms of hydrocephalus, and requires the concerted support of patient advocacy organizations, government- and private-funded research, biotechnology and pharmaceutical companies, the medical device industry, and the vast network of healthcare professionals.


Subject(s)
Hydrocephalus , Adult , Child , Humans , Hydrocephalus/diagnosis , Hydrocephalus/etiology , Hydrocephalus/therapy , Incidence , Infant
5.
Am J Physiol Cell Physiol ; 323(4): C1061-C1069, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36036449

ABSTRACT

Professor Hans H. Ussing (1911-2000) was one of the founding members of the field of epithelial cell biology. He is most famous for the electrophysiological technique that he developed to measure electrogenic ion flux across epithelial tissues. Ussing-style electrophysiology has been applied to multiple tissues and has informed fields as diverse as amphibian biology and medicine. In the latter, this technique has contributed to a basic understanding of maladies such as hypertension, polycystic kidney disease, cystic fibrosis, and diarrheal diseases to mention but a few. In addition to this valuable contribution to biological methods, Prof. Ussing also provided strong evidence for the concept of active transport several years before the elucidation of Na+K+ATPase. In addition, he provided cell biologists with the important concept of polarized epithelia with specific and different transporters found in the apical and basolateral membranes, thus providing these cells with the ability to conduct directional, active and passive transepithelial transport. My studies have used Ussing chamber electrophysiology to study the toad urinary bladder, an amphibian cell line, renal cell lines, and, most recently, choroid plexus cell lines. This technique has formed the basis of our in vitro mechanistic studies that are used in an iterative manner with animal models to better understand disease progress and treatment. I was honored to be invited to deliver the 2022 Hans Ussing Lecture sponsored by the Epithelial Transport Group of the American Physiological Society. This manuscript is a version of the material presented in that lecture.


Subject(s)
Adenosine Triphosphatases , Amphibians , Animals , Biological Transport/physiology , Brain , Epithelium/physiology , Kidney , Male , Mammals
6.
Am J Physiol Cell Physiol ; 323(6): C1823-C1842, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35938676

ABSTRACT

The objectives of these studies were twofold: 1) to characterize the human choroid plexus papilloma (HIBCPP) cell line as a model of the blood-cerebrospinal fluid barrier (BCSFB) via morphology, tightness, and polarization of transporters in choroid plexus epithelia (CPe), and 2) to utilize Ussing-style electrophysiology to elucidate signaling pathways associated with the activation of the transient receptor potential vanilloid 4 (TRPV4) channel involved in cerebrospinal fluid (CSF) secretion. RT-PCR was implemented to determine gene expression of cell fate markers, junctional complex proteins, and transporters of interest. Scanning electron microscopy and confocal three-dimensional renderings of cultures grown on permeable supports were utilized to delineate the morphology of the brush border, junctional complexes, and polarization of key transporters. Electrophysiology was used to understand and explore TRPV4-mediated signaling in the HIBCPP cell line, considering both short-circuit current (Isc) and conductance responses. HIBCPP cells grown under optimized culture conditions exhibited minimal multilayering, developed an intermediate resistance monolayer, retained differentiation properties, and expressed, and correctly localized, junctional proteins and native transporters. We found that activation of TRPV4 resulted in a robust, multiphasic change in electrogenic ion flux and increase in conductance accompanied by substantial fluid secretion. This response appears to be modulated by a number of different effectors, implicating phospholipase C (PLC), protein kinase C (PKC), and phosphoinositide 3-kinase (PI3K) in TRPV4-mediated ion flux. The HIBCPP cell line is a representative model of the human BCSFB, which can be utilized for studies of transporter function, intracellular signaling, and regulation of CSF production.


Subject(s)
Choroid Plexus , Phosphatidylinositol 3-Kinases , Humans , Choroid Plexus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line , Blood-Brain Barrier/metabolism , Membrane Transport Proteins/metabolism , Signal Transduction , Epithelial Cells/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
7.
Am J Physiol Cell Physiol ; 323(1): C1-C13, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35508188

ABSTRACT

The choroid plexus epithelium (CPe) forms a barrier between the cerebral blood supply and the cerebrospinal fluid (CSF), establishing the blood-CSF barrier (BCSFB). CSF is actively secreted by the CPe via tightly controlled processes involving multiple channels, transporters, and pumps. The importance of controlling CSF production and composition has been accentuated recently with an appreciation of CSF dysfunction in many pathologies. For mechanistic studies of CSF production, isolated CPe cell lines are valuable for the testing of hypotheses and potential drug targets. Although several continuous CPe cell lines have been described, none appear to have all the characteristics of the native epithelium and each must be used judiciously. The porcine choroid plexus-Riems (PCP-R) cell line forms a high-resistance monolayer characteristic of a barrier epithelium. Conservation of this phenotype is unusual among CPe cell lines, making this model useful for studies of the effects of infection, injury, and drugs on permeability. We have recently discovered that, although this line expresses many of the transporters expressed in the native tissue, some are mispolarized. As a result, inferences regarding fluid/electrolyte flux and the resultant CSF production should be pursued with caution. Furthermore, extended culture periods and changes in media composition result in significant morphological and functional variability. These studies provide a more detailed characterization of the PCP-R cell line concerning transporter expression, polarization, and functionality, as well as plasticity in culture, with the goal to provide the scientific community with information necessary to optimize future experiments with this model.


Subject(s)
Carrier Proteins , Choroid Plexus , Animals , Blood-Brain Barrier/metabolism , Carrier Proteins/metabolism , Cell Line , Cerebrospinal Fluid/metabolism , Choroid Plexus/metabolism , Epithelium/metabolism , Swine
8.
Cell Physiol Biochem ; 56(S2): 12-30, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35133721

ABSTRACT

Astrocytes are the second most abundant cell type in the central nervous system and serve various functions, many of which maintain homeostasis of the intracellular milieu in the face of constant change. In order to accomplish these important functions, astrocytes must regulate their cell volume. In astrocytes, cell volume regulation involves multiple channels and transporters, including AQP4, TRPV4, TRPM4, VRAC, Na+/K+ ATPase, NKCC1 and Kir4.1. AQP4 is a bidirectional water channel directly involved in astrocyte cell volume regulation. AQP4 also forms heteromultimeric complexes with other channels and transporters involved in cell volume regulation. TRPV4, a mechanosensitive channel in involved in osmotic regulation in various cell types, forms a complex with AQP4 to decrease cell volume in response to cell swelling. TRPM4 also forms a complex with AQP4 and SUR1 in response to injury resulting in cell swelling. Another complex forms between Na+/K+ ATPase, AQP4, and mGluR5 to regulate the perisynaptic space. NKCC1 is a co-transporter involved in cell volume increases either independently through cotransport of water or a functional interaction with AQPs. VRAC is implicated in regulatory volume decreases and may also functionally interact with AQP4. Although Kir4.1 colocalizes with AQP4, its role in cell volume regulation is debated. In diseases where fluid/electrolyte homeostasis is disturbed such as stroke, ischemic injury, inflammation, traumatic brain injury and hydrocephalus, cell volume regulation is challenged, sometimes past the point of recovery. Thus, a greater understanding of signaling pathways which regulate transport proteins as well as the functional and physical interactions that exist between transporters will provide a basis for the development of pharmaceutical targets to treat these prevalent and often devastating diseases.


Subject(s)
Aquaporin 4 , Astrocytes , Cell Size , Central Nervous System , Homeostasis
9.
Clin Kidney J ; 14(7): 1738-1746, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34221381

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenetic disorders in humans and is characterized by numerous fluid-filled cysts that grow slowly, resulting in end-stage renal disease in the majority of patients. Preclinical studies have indicated that treatment with low-dose thiazolidinediones, such as pioglitazone, decrease cyst growth in rodent models of PKD. METHODS: This Phase 1b cross-over study compared the safety of treatment with a low dose (15 mg) of the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone or placebo in PKD patients, with each treatment given for 1 year. The study monitored known side effects of PPAR-γ agonist treatment, including fluid retention and edema. Liver enzymes and risk of hypoglycemia were assessed throughout the study. As a secondary objective, the efficacy of low-dose pioglitazone was followed using a primary assessment of total kidney volume (TKV), blood pressure (BP) and kidney function. RESULTS: Eighteen patients were randomized and 15 completed both arms. Compared with placebo, allocation to pioglitazone resulted in a significant decrease in total body water as assessed by bioimpedance analysis {mean difference 0.16 Ω [95% confidence interval (CI) 0.24-2.96], P = 0.024} and no differences in episodes of heart failure, clinical edema or change in echocardiography. Allocation to pioglitazone led to no difference in the percent change in TKV of -3.5% (95% CI -8.4-1.4, P = 0.14), diastolic BP and microalbumin:creatinine ratio. CONCLUSIONS: In this small pilot trial in people with ADPKD but without diabetes, pioglitazone 15 mg was found to be as safe as placebo. Larger and longer-term randomized trials powered to assess effects on TKV are needed.

10.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32938829

ABSTRACT

Hydrocephalus is a serious condition that impacts patients of all ages. The standards of care are surgical options to divert, or inhibit production of, cerebrospinal fluid; to date, there are no effective pharmaceutical treatments, to our knowledge. The causes vary widely, but one commonality of this condition is aberrations in salt and fluid balance. We have used a genetic model of hydrocephalus to show that ventriculomegaly can be alleviated by inhibition of the transient receptor potential vanilloid 4, a channel that is activated by changes in osmotic balance, temperature, pressure and inflammatory mediators. The TRPV4 antagonists do not appear to have adverse effects on the overall health of the WT or hydrocephalic animals.


Subject(s)
Cerebral Cortex/drug effects , Disease Models, Animal , Hydrocephalus/drug therapy , Morpholines/pharmacology , Nervous System Malformations/drug therapy , Pyrroles/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Animals , Cerebral Cortex/pathology , Hydrocephalus/metabolism , Hydrocephalus/pathology , Nervous System Malformations/metabolism , Nervous System Malformations/pathology , Rats
11.
Am J Physiol Cell Physiol ; 317(5): C881-C893, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31411921

ABSTRACT

The choroid plexus (CP), composed of capillaries surrounded by a barrier epithelium, is the main producer of cerebrospinal fluid (CSF). The CP epithelium regulates the transport of ions and water between the blood and the ventricles, contributing to CSF production and composition. Several studies suggest a connection between the cation channel transient receptor potential vanilloid-4 (TRPV4) and transepithelial ion movement. TRPV4 is a nonselective, calcium-permeable cation channel present in CP epithelia reported to be activated by cytokines and inflammatory mediators. Utilizing the PCP-R (porcine choroid plexus-Riems) cell line, we investigated the effects of various cytokines and inflammatory mediators on TRPV4-mediated activity. Select proinflammatory cytokines (TNF-α, IL-1ß, TGF-ß1) had inhibitory effects on TRPV4-stimulated transepithelial ion flux and permeability changes, whereas anti-inflammatory cytokines (IL-10, IL-4, and IL-6) had none. Quantitative mRNA analysis showed that these cytokines had no effect on TRPV4 transcription levels. Inhibition of the transcription factor NF-κB, involved in the production and regulation of several inflammatory cytokines, inhibited TRPV4-mediated activity, suggesting a link between TRPV4 and cytokine production. Contrary to published studies, the proinflammatory mediator arachidonic acid (AA) had inhibitory rather than stimulatory effects on TRPV4-mediated responses. However, inhibition of AA metabolism also caused inhibitory effects on TRPV4, suggesting a complex interaction of AA and its metabolites in the regulation of TRPV4 activity. Together these data imply that TRPV4 activity is involved in the inflammatory response; it is negatively affected by proinflammatory mediators. Furthermore, arachidonic acid metabolites, but not arachidonic acid itself, are positive regulators of TRPV4.


Subject(s)
Choroid Plexus/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Inflammation Mediators/metabolism , TRPV Cation Channels/physiology , Animals , Cell Line , Choroid Plexus/cytology , Choroid Plexus/drug effects , Epithelial Cells/drug effects , Leucine/analogs & derivatives , Leucine/pharmacology , Sulfonamides/pharmacology , Swine , TRPV Cation Channels/agonists
12.
Sci Rep ; 9(1): 1069, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30705305

ABSTRACT

Transmembrane protein 67 (TMEM67) is mutated in Meckel Gruber Syndrome type 3 (MKS3) resulting in a pleiotropic phenotype with hydrocephalus and renal cystic disease in both humans and rodent models. The precise pathogenic mechanisms remain undetermined. Herein it is reported for the first time that a point mutation of TMEM67 leads to a gene dose-dependent hydrocephalic phenotype in the Wistar polycystic kidney (Wpk) rat. Animals with TMEM67 heterozygous mutations manifest slowly progressing hydrocephalus, observed during the postnatal period and continuing into adulthood. These animals have no overt renal phenotype. The TMEM67 homozygous mutant rats have severe ventriculomegaly as well as severe polycystic kidney disease and die during the neonatal period. Protein localization in choroid plexus epithelial cells indicates that aquaporin 1 and claudin-1 both remain normally polarized in all genotypes. The choroid plexus epithelial cells may have selectively enhanced permeability as evidenced by increased Na+, K+ and Cl- in the cerebrospinal fluid of the severely hydrocephalic animals. Collectively, these results suggest that TMEM67 is required for the regulation of choroid plexus epithelial cell fluid and electrolyte homeostasis. The Wpk rat model, orthologous to human MKS3, provides a unique platform to study the development of both severe and mild hydrocephalus.


Subject(s)
Ciliary Motility Disorders/metabolism , Encephalocele/metabolism , Hydrocephalus/metabolism , Membrane Proteins/metabolism , Polycystic Kidney Diseases/metabolism , Retinitis Pigmentosa/metabolism , Animals , Brain/metabolism , Chlorides/cerebrospinal fluid , Choroid Plexus/metabolism , Ciliary Motility Disorders/genetics , Encephalocele/genetics , Female , Hydrocephalus/genetics , Membrane Proteins/genetics , Mutation/genetics , Polycystic Kidney Diseases/genetics , Potassium/cerebrospinal fluid , Rats , Retinitis Pigmentosa/genetics , Sodium/cerebrospinal fluid
13.
Am J Physiol Cell Physiol ; 315(3): C357-C366, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29791207

ABSTRACT

The choroid plexus (CP) epithelium plays a major role in the production of cerebrospinal fluid (CSF). A polarized cell line, the porcine CP-Riems (PCP-R) line, which exhibits many of the characteristics of the native epithelium, was used to study the effect of activation of the transient receptor potential vanilloid 4 (TRPV4) cation channel found in the PCP-R cells as well as in the native epithelium. Ussing-style electrophysiological experiments showed that activation of TRPV4 with a specific agonist, GSK1016790A, resulted in an immediate increase in both transepithelial ion flux and conductance. These changes were inhibited by either of two distinct antagonists, HC067047 or RN1734. The change in conductance was reversible and did not involve disruption of epithelial junctional complexes. Activation of TRPV4 results in Ca2+ influx, therefore, we examined whether the electrophysiological changes were the result of secondary activation of Ca2+-sensitive channels. PCP-R cells contain two Ca2+-activated K+ channels, the small conductance 2 (SK2) and the intermediate conductance (IK) channels. Based on inhibitor studies, the former is not involved in the TRPV4-mediated electrophysiological changes whereas one of the three isoforms of the IK channel (KCNN4c) may play a role in the apical secretion of K+. Blocking the activity of this IK isoform with TRAM34 inhibited the TRPV4-mediated change in net transepithelial ion flux and the increased conductance. These studies implicate TRPV4 as a hub protein in the control of CSF production through stimulation by multiple effectors resulting in transepithelial ion and subsequent water movement.


Subject(s)
Choroid Plexus/metabolism , Epithelial Cells/metabolism , Membrane Potentials/physiology , TRPV Cation Channels/metabolism , Animals , Calcium/metabolism , Cell Line , Choroid Plexus/drug effects , Epithelial Cells/drug effects , Leucine/analogs & derivatives , Leucine/pharmacology , Protein Isoforms/metabolism , Sulfonamides/pharmacology , Swine
14.
Am J Physiol Cell Physiol ; 313(6): C664-C673, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28978526

ABSTRACT

Type II nephronophthisis (NPHP2) is an autosomal recessive renal cystic disorder characterized by mutations in the inversin gene. Humans and mice with mutations in inversin have enlarged cystic kidneys that may be due to fluid accumulation resulting from altered ion transport. To address this, transepithelial ion transport was measured in shRNA-mediated inversin-depleted mouse cortical collecting duct (mCCD) cells. Loss of inversin decreased the basal ion flux in mCCD cells compared with controls. Depletion of inversin decreased vasopressin-induced Na+ absorption but did not alter Cl- secretion by mCCD cells. Addition of amiloride, a specific blocker of the epithelial sodium channel (ENaC), abolished basal ion transport in both inversin knockdown and control cells, indicating ENaC involvement. Transcript levels of ENaC ß-subunit were reduced in inversin-knockdown cells consistent with decreased ENaC activity. Furthermore, Nedd4l (neural precursor cell expressed, developmentally downregulated 4 like), an upstream negative regulator of ENaC, was evaluated. The relative amount of the phosphorylated, inactive Nedd4l was decreased in inversin-depleted cells consistent with decreased ENaC activity. The protein levels of Sgk1 (serum and glucocorticoid-inducible kinase), which phosphorylates Nedd4l, remained unchanged although the transcript levels were increased in inversin-depleted cells. Interestingly, mRNA and protein levels of Crtc2 (Creb-regulated transcription coactivator) kinase, a positive regulator of Sgk1, were decreased in inversin-depleted cells. Together these results suggest that loss of inversin decreases Na+ transport via ENaC, mediated in part by transcriptional and posttranslational regulation of Crtc2/Sgk1/Nedd4l axis as a contributory mechanism for enlarged kidneys in NPHP2.


Subject(s)
Epithelial Cells/metabolism , Epithelial Sodium Channels/metabolism , Sodium/metabolism , Transcription Factors/deficiency , Animals , Biological Transport/physiology , Cell Line , Epithelial Sodium Channels/genetics , Gene Knockdown Techniques/methods , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factors/genetics
15.
Am J Physiol Regul Integr Comp Physiol ; 312(6): R965-R972, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28330966

ABSTRACT

Despite the effects of insulinopenia in type 1 diabetes and evidence that insulin stimulates multiple renal sodium transporters, it is not known whether normal variation in plasma insulin regulates sodium homeostasis physiologically. This study tested whether the normal postprandial increase in plasma insulin significantly attenuates renal sodium and volume losses. Rats were instrumented with chronic artery and vein catheters, housed in metabolic cages, and connected to hydraulic swivels. Measurements of urine volume and sodium excretion (UNaV) over 24 h and the 4-h postprandial period were made in control (C) rats and insulin-clamped (IC) rats in which the postprandial increase in insulin was prevented. Twenty-four-hour urine volume (36 ± 3 vs. 15 ± 2 ml/day) and UNaV (3.0 ± 0.2 vs. 2.5 ± 0.2 mmol/day) were greater in the IC compared with C rats, respectively. Four hours after rats were given a gel meal, blood glucose and urine volume were greater in IC rats, but UNaV decreased. To simulate a meal while controlling blood glucose, C and IC rats received a glucose bolus that yielded peak increases in blood glucose that were not different between groups. Urine volume (9.7 ± 0.7 vs. 6.0 ± 0.8 ml/4 h) and UNaV (0.50 ± 0.08 vs. 0.20 ± 0.06 mmol/4 h) were greater in the IC vs. C rats, respectively, over the 4-h test. These data demonstrate that the normal increase in circulating insulin in response to hyperglycemia may be required to prevent excessive renal sodium and volume losses and suggest that insulin may be a physiological regulator of sodium balance.


Subject(s)
Hyperglycemia/blood , Insulin/blood , Kidney/metabolism , Natriuresis , Postprandial Period , Renal Elimination , Sodium/urine , Urination , Animals , Biomarkers/blood , Blood Glucose/metabolism , Glucose Clamp Technique , Hyperglycemia/physiopathology , Hyperglycemia/urine , Male , Models, Animal , Rats, Sprague-Dawley , Time Factors , Up-Regulation
16.
Sci Rep ; 6: 26794, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27243144

ABSTRACT

Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with ß-galactosidase reporter exhibit an elevated VEGF, localization of ß-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.


Subject(s)
Cerebral Ventricles/pathology , Heparin-binding EGF-like Growth Factor/metabolism , Hydrocephalus/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Movement , Endothelial Cells/metabolism , Humans , Hydrocephalus/pathology , Lateral Ventricles/metabolism , Male , Mice, Inbred C57BL , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Signal Transduction
17.
J Transl Int Med ; 4(3): 118-126, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-28191533

ABSTRACT

BACKGROUND AND OBJECTIVES: The studies were designed to test the efficacy of two peroxisome proliferator-activated receptor γ (PPARγ) agonists in two rodent models of polycystic kidney disease (PKD). MATERIALS AND METHODS: The PCK rat is a slowly progressing cystic model while the Wpk-/- rat is a rapidly progressing model. PCK rats were fed with a pharmacological (0.4 mg/kg body weight [BW]) and a sub-pharmacological (0.04 mg/kg BW) dose of rosiglitazone (week 4-28). Wpk-/- rats were fed with pharmacological (2.0 mg/kg BW) and sub-pharmacologic (0.2 mg/kg BW) doses of pioglitazone from day 5 to 18. At termination, kidney weights of treated versus untreated cystic animals were used to determine efficacy. The current studies were also compared with previous studies containing higher doses of PPARγ agonists. The concentrations used in the animals were calculated with reference to equivalent human doses for both drugs. RESULTS: The current studies demonstrate: 1) that low, pharmacologically relevant, doses of the PPARγ agonists effectively inhibit cyst growth; 2) there is a class action of the drugs with both commercially available PPARγ agonists, rosiglitazone, and pioglitazone, inhibiting cyst growth; 3) the drugs showed efficacy in two different preclinical cystic models. In the PCK rat, animals fed with a sub-pharmacological dose of rosiglitazone for 24 weeks had significantly lower kidney weights than untreated animals (3.68 ± 0.13 g vs. 4.17 ± 0. 11 g, respectively, P < 0.01) while treatment with a pharmacologic dose had no significant effect on kidney weight. The rapidly progressing Wpk-/- rats were fed with pharmacological and sub-pharmacologic doses of pioglitazone from day 5 to 18 and the kidneys were compared with non-treated, cystic animals. Kidney weights on the pharmacologic dose were not statistically lower than the untreated animals while rats fed a sub-pharmacologic dose showed a significant decrease compared with untreated animals (3.35 ± 0.15 g vs. 4.55 ± 0.46 g, respectively, P = 0.045). CONCLUSION: Concentrations of PPARγ agonists below the human equivalent diabetic doses are effective in slowing cyst growth in two rodent models of PKD.

18.
Am J Physiol Lung Cell Mol Physiol ; 306(10): L937-46, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24705724

ABSTRACT

Calu-3 is a well-differentiated human bronchial cell line with the characteristics of the serous cells of airway submucosal glands. The submucosal glands play a major role in mucociliary clearance because they secrete electrolytes that facilitate airway hydration. Given the significance of both long- and short-term ß-adrenergic receptor agonists in the treatment of respiratory diseases, it is important to determine the role of these receptors and their ligands in normal physiological function. The present studies were designed to characterize the effect of epinephrine, the naturally occurring ß-adrenergic receptor agonist, on electrolyte transport of the airway serous cells. Interestingly, epinephrine stimulated two anion secretory channels, the cystic fibrosis transmembrane conductance regulator and a Ca(2+)-activated Cl(-) channel, with the characteristics of transmembrane protein 16A, thereby potentially altering mucociliary clearance via multiple channels. Consistent with the dual channel activation, epinephrine treatment resulted in increases in both intracellular cAMP and Ca(2+). Furthermore, the present results extend previous reports indicating that the two anion channels are functionally linked.


Subject(s)
Chlorides/metabolism , Epinephrine/physiology , Adrenergic beta-2 Receptor Agonists/pharmacology , Amiloride/pharmacology , Anoctamin-1 , Biological Transport , Calcium Ionophores/pharmacology , Cell Line, Tumor , Chloride Channels/metabolism , Cyclic AMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epinephrine/pharmacology , Epithelial Sodium Channel Blockers/pharmacology , Humans , Ionomycin/pharmacology , Neoplasm Proteins/metabolism , Sodium/metabolism , Tannins/pharmacology
19.
Article in English | MEDLINE | ID: mdl-24228069

ABSTRACT

To assess the biological effects of low level, water dispersible, functionalised carbon nanotube (f-CNT) exposure in an in vitro model simulating the digestive tract, cellular protein expression was quantified and compared using label-free quantitative mass spectrometry (LFQMS). Co-cultured cells were exposed to well-characterised SWCNT-COOH, MWCNT-COOH, and MWCNT-PVP. The relative expression of 2,282 unique proteins was compared across the dose groups. 428 proteins were found to be differentially expressed. At the high dose, the extent of differential protein expression was CNT-specific and directly related to CNT colloidal stability. Cells responded to low level MWCNT-PVP exposure with three-fold greater differential expression. Bioinformatic analysis indicated significant and f-CNT-specific effects on relevant molecular and cellular functions and canonical pathways, with little overlap across f-CNT type and in the absence of overt toxicity.

20.
Proteomes ; 1(3): 219-239, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-25177543

ABSTRACT

Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 µg/mL and 100 ng/mL of two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 µg/mL; 0.4 µg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon nanotube exposure.

SELECTION OF CITATIONS
SEARCH DETAIL
...