Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611951

ABSTRACT

Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smartphones, televisions, and the automotive sector. However, this technology is still not perfect, and its application for lighting purposes has been slow. For further development of the OLEDs, we designed twisted donor-acceptor-type electroactive bipolar derivatives using benzophenone and bicarbazole as building blocks. Derivatives were synthesized through the reaction of 4-fluorobenzophenone with various mono-alkylated 3,3'-bicarbazoles. We have provided a comprehensive structural characterization of these compounds. The new materials are amorphous and exhibit suitable glass transition temperatures ranging from 57 to 102 °C. They also demonstrate high thermal stability, with decomposition temperatures reaching 400 °C. The developed compounds exhibit elevated photoluminescence quantum yields (PLQY) of up to 75.5% and favourable HOMO-LUMO levels, along with suitable triplet-singlet state energy values. Due to their good solubility and suitable film-forming properties, all the compounds were evaluated as blue TADF emitters dispersed in commercial 4,4'-bis(N-carbazolyl)-1,10-biphenyl (CBP) host material and used for the formation of emissive layer of organic light-emitting diodes (OLEDs) in concentration-dependent experiments. Out of these experiments, the OLED with 15 wt% of the emitting derivative 4-(9'-{2-ethylhexyl}-[3,3']-bicarbazol-9-yl)benzophenone exhibited superior performance. It attained a maximum brightness of 3581 cd/m2, a current efficacy of 5.7 cd/A, a power efficacy of 4.1 lm/W, and an external quantum efficacy of 2.7%.

2.
Nanomaterials (Basel) ; 14(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38392729

ABSTRACT

Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of OLEDs enables the development of innovative lighting solutions, facilitating the creation of customizable and contoured lighting panels. Among the diverse electroactive components employed in the molecular design of OLED materials, the benzophenone core has attracted much attention as a fragment for the synthesis of organic semiconductors. On the other hand, benzophenone also functions as a classical phosphor with high intersystem crossing efficiency. This characteristic makes it a compelling candidate for effective reverse intersystem crossing, with potential in leading to the development of thermally activated delayed fluorescent (TADF) emitters. These emitting materials witnessed a pronounced interest in recent years due to their incorporation in metal-free electroactive frameworks and the capability to convert triplet excitons into emissive singlet excitons through reverse intersystem crossing (RISC), consequently achieving exceptionally high external quantum efficiencies (EQEs). This review article comprehensively overviews the synthetic pathways, thermal characteristics, electrochemical behaviour, and photophysical properties of derivatives based on benzophenone. Furthermore, we explore their applications in OLED devices, both as host materials and emitters, shedding light on the promising opportunities that benzophenone-based compounds present in advancing OLED technology.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38251111

ABSTRACT

This paper delves into the development of a group of twisted donor-acceptor-donor (D-A-D) derivatives incorporating bicarbazole as electron donor and benzophenone as electron acceptor for potential use as blue emitters in OLEDs. The derivatives were synthesized in a reaction of 4,4'-difluorobenzophenone with various 9-alkyl-9'H-3,3'-bicarbazoles. The materials, namely, DB14, DB23, and DB29, were designed with different alkyl side chains to enhance their solubility and film-forming properties of layers formed using the spin-coating from solution method. The new materials demonstrate high thermal stabilities with decomposition temperatures >383 °C, glass transition temperatures in the range of 95-145 °C, high blue photoluminescence quantum yields (>52%), and short decay times, which range in nanoseconds. Due to their characteristics, the derivatives were used as blue emitters in OLED devices. Some of the OLEDs incorporating the DB23 emitter demonstrated a high external quantum efficiency (EQEmax) of 5.3%, which is very similar to the theoretical limit of the first-generation devices.

4.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37110993

ABSTRACT

Organic light-emitting diodes (OLEDs) have played a vital role in showing tremendous technological advancements for a better lifestyle, due to their display and lighting technologies in smartphones, tablets, television, and automotive industries. Undoubtedly, OLED is a mainstream technology and, inspired by its advancements, we have designed and synthesized the bicarbazole-benzophenone-based twisted donor-acceptor-donor (D-A-D) derivatives, namely DB13, DB24, DB34, and DB43, as bi-functional materials. These materials possess high decomposition temperatures (>360 °C) and glass transition temperatures (~125 °C), a high photoluminescence quantum yield (>60%), wide bandgap (>3.2 eV), and short decay time. Owing to their properties, the materials were utilized as blue emitters as well as host materials for deep-blue and green OLEDs, respectively. In terms of the blue OLEDs, the emitter DB13-based device outperformed others by showing a maximum EQE of 4.0%, which is close to the theoretical limit of fluorescent materials for a deep-blue emission (CIEy = 0.09). The same material also displayed a maximum power efficacy of 45 lm/W as a host material doped with a phosphorescent emitter Ir(ppy)3. Furthermore, the materials were also utilized as hosts with a TADF green emitter (4CzIPN) and the device based on DB34 displayed a maximum EQE of 11%, which may be attributed to the high quantum yield (69%) of the host DB34. Therefore, the bi-functional materials that are easily synthesized, economical, and possess excellent characteristics are expected to be useful in various cost-effective and high-performance OLED applications, especially in displays.

5.
Molecules ; 26(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946643

ABSTRACT

Low color temperature candlelight organic light-emitting diodes (LEDs) are human and environmentally friendly because of the absence of blue emission that might suppress at night the secretion of melatonin and damage retina upon long exposure. Herein, we demonstrated a lighting device incorporating a phenoxazine-based host material, 3,3-bis(phenoxazin-10-ylmethyl)oxetane (BPMO), with the use of orange-red and yellow phosphorescent dyes to mimic candlelight. The resultant BPMO-based simple structured candlelight organic LED device permitted a maximum exposure limit of 57,700 s, much longer than did a candle (2750 s) or an incandescent bulb (1100 s) at 100 lx. The resulting device showed a color temperature of 1690 K, which is significantly much lower than that of oil lamps (1800 K), candles (1900 K), or incandescent bulbs (2500 K). The device showed a melatonin suppression sensitivity of 1.33%, upon exposure for 1.5 h at night, which is 66% and 88% less than the candle and incandescent bulb, respectively. Its maximum power efficacy is 23.1 lm/W, current efficacy 22.4 cd/A, and external quantum efficiency 10.2%, all much higher than the CBP-based devices. These results encourage a scalable synthesis of novel host materials to design and manufacture high-efficiency candlelight organic LEDs.

6.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361768

ABSTRACT

Pyridinyl-carbazole fragments containing low molar mass compounds as host derivatives H1 and H2 were synthesized, investigated, and used for the preparation of electro-phosphorescent organic light-emitting devices (PhOLEDs). The materials demonstrated high stability against thermal decomposition with the decomposition temperatures of 361-386 °C and were suitable for the preparation of thin amorphous and homogeneous layers with very high values of glass transition temperatures of 127-139 °C. It was determined that triplet energy values of the derivatives are, correspondingly, 2.82 eV for the derivative H1 and 2.81 eV for the host H2. The new derivatives were tested as hosts of emitting layers in blue, as well as in green phosphorescent OLEDs. The blue device with 15 wt.% of the iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) emitter doping ratio in host material H2 exhibited the best overall characteristics with a power efficiency of 24.9 lm/W, a current efficiency of 23.9 cd/A, and high value of 10.3% of external quantum efficiency at 100 cd/m2. The most efficient green PhOLED with 10 wt% of Ir(ppy)3 {tris(2-phenylpyridine)iridium(III)} in the H2 host showed a power efficiency of 34.1 lm/W, current efficiency of 33.9 cd/A, and a high value of 9.4% for external quantum efficiency at a high brightness of 1000 cd/m2, which is required for lighting applications. These characteristics were obtained in non-optimized PhOLEDs under an ordinary laboratory atmosphere and could be improved in the optimization process. The results demonstrate that some of the new host materials are very promising components for the development of efficient phosphorescent devices.

7.
Molecules ; 26(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808321

ABSTRACT

A group of polyethers containing electroactive pendent 4,7-diarylfluorene chromophores have been prepared by the multi-step synthetic route. Full characterization of their structures has been presented. The polymeric materials represent derivatives of high thermal stability with initial thermal degradation temperatures in a range of 392-397 °C. Glass transition temperatures of the amorphous polymers range from 28 °C to 63 °C and depend on structures of the 4,7-diarylfluorene chromophores. Electron photoemission spectra of thin layers of the electroactive derivatives showed ionization potentials in the range of 5.8-6.0 eV. Hole injecting/transporting properties of the prepared polymeric materials were confirmed during formation of organic light-emitting diodes with tris(quinolin-8-olato)aluminium (Alq3) as a green emitter, which also serves as an electron transporting layer. The device using hole-transporting polymer with electronically isolated 2,7-di(4-biphenyl)fluorene chromophores demonstrated the best overall performance with low turn on voltage of 3 V, high current efficiency exceeding 1.7 cd/A, and with maximum brightness over 200 cd/m2. The organic light-emitting diode (OLED) characteristics were measured in non-optimized test devices. The efficiencies could be further improved by an optimization of device structure, formation conditions, and encapsulation of the devices.

SELECTION OF CITATIONS
SEARCH DETAIL