Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 92: 105553, 2022 02.
Article in English | MEDLINE | ID: mdl-34973589

ABSTRACT

BACKGROUND: The 3D printing technology allows to produce custom shapes and add functionalities to foot orthoses which offers better options for the treatment of flatfeet. This study aimed to assess the effect of 3D printed foot orthoses stiffness and/or a newly design posting on muscle activity, plantar pressures, and center of pressure displacement in individuals with flatfeet. METHODS: Nineteen individuals with flatfeet took part in this study. Two pairs of foot orthoses with different stiffness were designed for each participant and 3D printed. In addition, the flexible foot orthoses could feature an innovative rearfoot posting. Muscle activity, plantar pressures, and center of pressure displacement were recorded during walking. FINDINGS: Walking with foot orthoses did not alter muscle activity time histories. Regarding plantar pressures, the most notable changes were observed in the midfoot area, where peak pressures, mean pressures and contact area increased significantly during walking with foot orthoses. The latter was reinforced by increasing the stiffness. Concerning the center of pressure displacement, foot orthoses shifted the center of pressure forward and medially at early stance. At the end of the stance phase, a transition of the center of pressure in posterior direction was observed during the posting condition. No effect of stiffness was observed on center of pressure displacement. INTERPRETATION: The foot orthoses stiffness and the addition of posting influenced plantar pressures during walking. The foot orthoses stiffness mainly altered the plantar pressures under the midfoot area. However, posting mainly acted on peak and mean pressures under the rearfoot area.


Subject(s)
Flatfoot , Foot Orthoses , Biomechanical Phenomena/physiology , Equipment Design , Flatfoot/therapy , Humans , Muscles , Pressure , Printing, Three-Dimensional , Walking
2.
Gait Posture ; 91: 117-125, 2022 01.
Article in English | MEDLINE | ID: mdl-34673447

ABSTRACT

BACKGROUND: Foot orthoses (FOs) are one of the most common interventions to restore normal foot mechanics in flatfoot individuals. New technologies have made it possible to deliver customized FOs with complex designs for potentially better functionalities. However, translating the individuals' biomechanical needs into the design of customized FOs is not yet fully understood. RESEARCH QUESTION: Our objective was to identify whether the deformation of customized FOs is related to foot kinematics and plantar pressure during walking. METHODS: The kinematics of multi-segment foot and FOs contour were recorded together with plantar pressure in 17 flatfoot individuals while walking with customized FOs. The deformation of FOs surface was predicted from its contour kinematics using an artificial neural network. Plantar pressure map and deformation were divided into five anatomically based regions defined by the corresponding foot segments. Forward stepwise linear mixed models were built for each of the four gait phases to determine the feet-FOs interaction. RESULTS: It was observed that some associations existed between foot kinematics and pressure with regional FOs deformation. From heel-strike to foot-flat, longitudinal arch angle was associated with FOs deformation in forefoot. From foot-flat to midstance, rearfoot eversion accounted for variation in the deformation of medial FOs regions, and forefoot abduction for the lateral regions. From midstance to heel-off, rearfoot eversion, longitudinal arch angle, and plantar pressure played significant role in deformation. Finally, from heel-off to toe-off, forefoot adduction affected the deformation of forefoot and midfoot. SIGNIFICANCE: This study provides guidelines for designing customized FOs. Flatfoot individuals with excessive rearfoot eversion or very flexible medial arches require more support on medial FOs regions, while the ones with excessive forefoot abduction need the support on lateral regions. However, a compromise should be made between the level of support and the level of increase in plantar pressure to avoid stress on foot structures.


Subject(s)
Flatfoot , Foot Orthoses , Biomechanical Phenomena , Foot , Humans , Walking
3.
Clin Biomech (Bristol, Avon) ; 86: 105390, 2021 06.
Article in English | MEDLINE | ID: mdl-34044295

ABSTRACT

BACKGROUND: Foot orthoses are commonly used to correct for foot alterations and especially address excessive foot pronation in individuals with flatfeet. In recent years, 3D printing has taken a key place in orthotic manufacturing processes as it offers more options and can be patient specific. Hence, the purpose of this study was to evaluate whether stiffness of 3D printed foot orthoses and a newly designed rearfoot posting have an effect on lower limb kinematics and kinetics in individuals with flatfeet. METHODS: Nineteen patients with flexible flatfeet were provided two pairs of customized 3D printed ¾ length orthotics. Foot orthoses were of different stiffness and could feature a rearfoot posting, consisting of 2-mm carbon fiber plate. Lower limb kinematics and kinetics were computed using a multi-segment foot model. One-way ANOVAs using statistical non-parametric mapping, refined by effect sizes, were performed to determine the magnitude of the effect between conditions. FINDINGS: Foot orthoses stiffness had little effect on midfoot and forefoot biomechanics. Reductions in midfoot eversion and forefoot abduction were observed during short periods of stance with rigid foot orthoses. Adding the posting had notable effects on rearfoot kinematics and on the ankle and knee kinetics in the frontal plane; it significantly reduced the eversion angle and inversion moment at the ankle, and increased the knee abduction moment. INTERPRETATION: Using an anti-pronator component is more effective than increasing foot orthoses stiffness to observe a beneficial impact of foot orthoses on the control of excessive foot pronation in individuals with flatfeet.


Subject(s)
Flatfoot , Foot Orthoses , Biomechanical Phenomena , Flatfoot/therapy , Humans , Kinetics , Lower Extremity
4.
Gait Posture ; 81: 247-253, 2020 09.
Article in English | MEDLINE | ID: mdl-32818861

ABSTRACT

BACKGROUND: Foot orthoses (FOs) have been widely prescribed to alter various lower limb disorders. FOs' geometrical design and material properties have been shown to influence their impact on foot biomechanics. New technologies such as 3D printing provide the potential to produce custom shapes and add functionalities to FOs by adding extra-components. RESEARCH QUESTION: The purpose of this study was to determine the effect of 3D printed FOs stiffness and newly design postings on foot kinematics and plantar pressures in healthy people. METHODS: Two pairs of ¾ length prefabricated 3D printed FOs were administered to 15 healthy participants with normal foot posture. FOs were of different stiffness and were designed so that extra-components, innovative flat postings, could be inserted at the rearfoot. In-shoe multi-segment foot kinematics as well as plantar pressures were recorded while participants walked on a treadmill. One-way ANOVAs using statistical non-parametric mapping were performed to estimate the effect of FOs stiffness and then the addition of postings during the stance phase of walking. RESULTS: Increasing FOs stiffness altered frontal and transverse plane foot kinematics, especially by further reducing rearfoot eversion and increasing the rearfoot abduction. Postings had notable effect on rearfoot frontal plane kinematics, by enhancing FOs effect. Looking at plantar pressures, wearing FOs was associated with a shift of the loads from the rearfoot to the midfoot region. Higher peak pressures under the rearfoot and midfoot (up to +31.7 %) were also observed when increasing the stiffness of the FOs. SIGNIFICANCE: 3D printing techniques offer a wide range of possibilities in terms of material properties and design, providing clinicians the opportunity to administer FOs that could be modulated according to pathologies as well as during the treatment by adding extra-components. Further studies including people presenting musculoskeletal disorders are required.


Subject(s)
Biomechanical Phenomena/physiology , Foot Orthoses/standards , Plantar Plate/physiology , Printing, Three-Dimensional/standards , Adult , Healthy Volunteers , Humans , Male , Young Adult
5.
Foot (Edinb) ; 42: 101646, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32045719

ABSTRACT

OBJECTIVE: Foot orthoses (FOs) are popular treatment to alleviate several abnormalities of lower extremity. FO designs might alter lower extremity biomechanics differently, but the association is not yet known. This review aimed to evaluate how different FO designs, namely FO with medial posting, lateral posting, arch support, or arch & heel support, change lower limb kinematics and kinetics during walking. LITERATURE SURVEY: Electronic database search were conducted from inception to March 2019, and 25 papers passed the inclusion criteria. Two independent reviewers checked the quality using a modified Downs and Black checklist (73.7±5.5%) and a biomechanical quality checklist (71.4±17.1%). Effect sizes for differences between with- and without- FO walking were calculated, and meta-analysis was performed whenever at least two studies reported the same variable. RESULTS: Medial posting reduced peak ankle eversion moment. Lateral posting brought about higher peak ankle dorsiflexion and peak ankle eversion for kinematics, as well as higher peak ankle abduction moment, lower peak knee adduction moment, and higher peak mediolateral ground reaction force (GRF) for kinetics. FOs with either arch support or arch & heel support tended to decrease vertical ground reaction force, but it was not significant. CONCLUSION: The findings of this review reveal that medial or lateral posting work efficiently to change foot and knee kinematics and kinetics. However, the impact force is just slightly decreased by arch-supported and heel supported FOs. Due to the small number of available studies, and heterogeneity in meta-analysis findings, further research with more standardized biomechanical approach are required.


Subject(s)
Foot Orthoses , Gait , Walking , Biomechanical Phenomena , Equipment Design , Humans
6.
Clin Biomech (Bristol, Avon) ; 59: 117-129, 2018 11.
Article in English | MEDLINE | ID: mdl-30227277

ABSTRACT

BACKGROUND: Foot orthoses are commonly used for the management of excessive foot pronation in people with pes planovalgus. However, results are inconsistent due to variability in orthosis geometrical designs. This systematic review with meta-analysis aimed to classify and investigate the effects of foot orthoses, based on their design, in terms of lower limb kinematics and kinetics in people with pes planovalgus. METHODS: Electronic databases were searched up until August 2017. Peer-reviewed journal studies including adult participants with flexible pes planovalgus and reporting kinematics and kinetics effects of foot orthoses during walking were included and classified based on the orthosis design. Eleven studies were retained and assessed according to methodological (mean 76.1%; range [63.2%-84.2%] - high) and biomechanical (mean 71.6%; range [44.4%-100%] - moderate) qualities. Meta-analysis was performed by calculating the effect size, using standardized mean differences, between control and orthotics conditions. FINDINGS: Meta-analysis revealed less rearfoot eversion with the use of foot orthoses including medial forefoot or both forefoot and rearfoot posting. However, no significant effect of foot orthoses with arch support and neutral rearfoot posting to control excessive foot pronation were found. In terms of kinetics, none of the foot orthoses showed effects. INTERPRETATION: Using medial posting is the most effective foot orthotic feature to reduce the peak rearfoot eversion and to control excessive foot pronation. Nevertheless, heterogeneity between study protocols contributes to the low evidences of foot orthoses effects on kinematics and kinetics during walking in people with pes planovalgus.


Subject(s)
Equipment Design , Flatfoot/physiopathology , Foot Orthoses , Lower Extremity/physiopathology , Walking/physiology , Adult , Biomechanical Phenomena , Female , Foot/physiopathology , Humans , Kinetics , Male , Pronation
7.
Article in English | MEDLINE | ID: mdl-23654344

ABSTRACT

The scapulo-humeral rhythm quantifies shoulder joint coordination during arm elevation. The common method calculates a ratio of gleno-humeral (GH) elevation to scapulo-thoracic upward rotation angles. However the other rotations also contribute to arm elevation. The objective is to propose a 3D dynamic scapulo-humeral rhythm calculation method including all rotations of the shoulder joints and compare with the common method. Twenty-nine skin markers were placed on the trunk and dominant arm of 14 healthy males to measure shoulder kinematics. Two-way repeated measures ANOVAs were applied to compare the two methods of calculation of joint contributions and scapulo-humeral rhythm during arm elevation. Significant main effects (p < 0.05) were observed between methods in joint contribution angles and scapulo-humeral rhythms. A systematic overestimation of the GH contribution was observed when only using the GH elevation angle because the scapula is moved outside a vertical plane. Hence, the proposed 3D method to calculate the scapulo-humeral rhythm allows an improved functional shoulder evaluation.


Subject(s)
Humerus/physiology , Scapula/physiology , Shoulder Joint/physiology , Adult , Biomechanical Phenomena , Humans , Imaging, Three-Dimensional , Male , Range of Motion, Articular , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...