Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743625

ABSTRACT

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


Subject(s)
AMP-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Spheroids, Cellular , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinase Kinases/genetics , Spheroids, Cellular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation , Cell Line, Tumor , CRISPR-Cas Systems , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
Nature ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720073

ABSTRACT

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.

3.
Cancer Res ; 84(8): 1191-1194, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38364233

ABSTRACT

Serine metabolism plays a pivotal role in cancer, making it an appealing therapeutic target. Two recent studies published in Nature Metabolism and Science Translational Medicine uncovered novel players and therapeutic opportunities within this crucial metabolic pathway. Papalazarou and colleagues employed genetic tools coupled with metabolomics and high-throughput imaging to identify and characterize membrane transporters involved in serine uptake and mitochondrial import in colorectal cancer. Notably, they showed that dual inhibition of these transporters in combination with impaired serine biosynthesis reduced tumor growth in xenograft models. In a parallel study, Zhang and colleagues identified isocitrate dehydrogenase I (IDH1) as a novel regulator of serine biosynthesis in non-small cell lung cancer. Through extensive mechanistic studies, they demonstrated that IDH1 enhances the expression of the key enzymes phosphoglycerate dehydrogenase and phosphoserine aminotransferase 1 via a noncanonical function independent of its enzymatic activity. Strikingly, pharmacologic disruption of this novel function of IDH1 not only diminished tumor growth but also enhanced the anticancer efficacy of dietary serine restriction in mouse models of lung cancer. Together, these studies advance our mechanistic understanding of how cancer cells fulfill their serine requirements and reveal innovative therapeutic avenues to deprive tumors of this vital nutrient.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Serine/metabolism , Cell Line, Tumor , Phosphoglycerate Dehydrogenase
4.
Curr Biol ; 33(24): R1289-R1291, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38113839

ABSTRACT

Lysosomes are highly dynamic organelles that rapidly respond to changes in cellular nutrient status. A new study identifies a phosphoinositide switch that dictates lysosome function during nutrient starvation.


Subject(s)
Phosphatidylinositols , Starvation , Humans , Phosphatidylinositols/metabolism , Signal Transduction , Nutrients , Starvation/metabolism , Lysosomes/metabolism
6.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37904985

ABSTRACT

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1- mediated growth suppression we developed a spheroid-based cell culture assay to study LKB1- dependent growth. Using this assay, along with genome-wide CRISPR screens and validation with orthogonal methods, we discovered that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase, which promotes the internalization of wild-type EGFR. Our findings reveal a new mechanism of regulation of EGFR, which may have implications for the treatment of LKB1 -mutant LUAD.

7.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595559

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Subject(s)
Arginine , Lipogenesis , Sterol Regulatory Element Binding Protein 1 , Lipogenesis/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , RNA Splicing Factors , Sterol Regulatory Element Binding Protein 1/metabolism , Humans , Sterol Regulatory Element Binding Proteins/metabolism
8.
Nat Cell Biol ; 25(9): 1254-1264, 2023 09.
Article in English | MEDLINE | ID: mdl-37580388

ABSTRACT

Lysosomes are catabolic organelles that govern numerous cellular processes, including macromolecule degradation, nutrient signalling and ion homeostasis. Aberrant changes in lysosome abundance are implicated in human diseases. Here we outline the mechanisms of lysosome biogenesis and turnover, and discuss how changes in the lysosome pool impact physiological and pathophysiological processes.


Subject(s)
Lysosomes , Organelles , Humans , Lysosomes/metabolism , Homeostasis , Signal Transduction , Autophagy/physiology
9.
Nature ; 613(7945): 759-766, 2023 01.
Article in English | MEDLINE | ID: mdl-36631611

ABSTRACT

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Subject(s)
Phosphoproteins , Protein Serine-Threonine Kinases , Proteome , Serine , Threonine , Humans , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Substrate Specificity , Threonine/metabolism , Proteome/chemistry , Proteome/metabolism , Datasets as Topic , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Cell Line , Phosphoserine/metabolism , Phosphothreonine/metabolism
10.
Cell Rep ; 41(10): 111733, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476861

ABSTRACT

AKT is a central signaling protein kinase that plays a role in the regulation of cellular survival metabolism and cell growth, as well as in pathologies such as diabetes and cancer. Human AKT consists of three isoforms (AKT1-3) that may fulfill different functions. Here, we report that distinct subcellular localization of the isoforms directly influences their activity and function. AKT1 is localized primarily in the cytoplasm, AKT2 in the nucleus, and AKT3 in the nucleus or nuclear envelope. None of the isoforms actively translocates into the nucleus upon stimulation. Interestingly, AKT3 at the nuclear envelope is constitutively phosphorylated, enabling a constant phosphorylation of TSC2 at this location. Knockdown of AKT3 induces moderate attenuation of cell proliferation of breast cancer cells. We suggest that in addition to the stimulation-induced activation of the lysosomal/cytoplasmic AKT1-TSC2 pathway, a subpopulation of TSC2 is constitutively inactivated by AKT3 at the nuclear envelope of transformed cells.


Subject(s)
Nuclear Envelope , Proto-Oncogene Proteins c-akt , Humans
11.
Sci Signal ; 15(759): eabj4220, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36346837

ABSTRACT

The role of metabolites exchanged in the tumor microenvironment is largely thought of as fuels to drive the increased biosynthetic and bioenergetic demands of growing tumors. However, this view is shifting as metabolites are increasingly shown to function as signaling molecules that directly regulate oncogenic pathways. Combined with our growing understanding of the essential role of stromal cells, this shift has led to increased interest in how the collective and interconnected metabolome of the tumor microenvironment can drive malignant transformation, epithelial-to-mesenchymal transition, drug resistance, immune evasion, and metastasis. In this review, we discuss how metabolite exchange between tumors and various cell types in the tumor microenvironment-such as fibroblasts, adipocytes, and immune cells-can activate signaling pathways that drive cancer progression.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Signal Transduction , Epithelial-Mesenchymal Transition , Neoplasms/metabolism , Stromal Cells/metabolism
12.
Nat Commun ; 13(1): 6239, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266345

ABSTRACT

The systemic metabolic shifts that occur during aging and the local metabolic alterations of a tumor, its stroma and their communication cooperate to establish a unique tumor microenvironment (TME) fostering cancer progression. Here, we show that methylmalonic acid (MMA), an aging-increased oncometabolite also produced by aggressive cancer cells, activates fibroblasts in the TME, which reciprocally secrete IL-6 loaded extracellular vesicles (EVs) that drive cancer progression, drug resistance and metastasis. The cancer-associated fibroblast (CAF)-released EV cargo is modified as a result of reactive oxygen species (ROS) generation and activation of the canonical and noncanonical TGFß signaling pathways. EV-associated IL-6 functions as a stroma-tumor messenger, activating the JAK/STAT3 and TGFß signaling pathways in tumor cells and promoting pro-aggressive behaviors. Our findings define the role of MMA in CAF activation to drive metastatic reprogramming, unveiling potential therapeutic avenues to target MMA at the nexus of aging, the tumor microenvironment and metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Extracellular Vesicles , Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Reactive Oxygen Species/metabolism , Methylmalonic Acid/metabolism , Interleukin-6/metabolism , Tumor Microenvironment , Neoplasms/pathology , Extracellular Vesicles/metabolism , Transforming Growth Factor beta/metabolism
13.
Sci Signal ; 15(757): eabm0808, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36282911

ABSTRACT

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Phosphorylation , Glycogen Synthase Kinase 3/metabolism , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Serine/metabolism , Threonine/metabolism , Mammals/metabolism , Protein Serine-Threonine Kinases
14.
Sci Adv ; 8(20): eabm8786, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35594343

ABSTRACT

Serine/one-carbon metabolism provides critical resources for nucleotide biosynthesis and epigenetic maintenance and is thus necessary in cancer cell growth, although the detailed regulatory mechanisms remain unclear. We uncover a critical role of glycogen synthase kinase 3 (GSK3) in regulating the expression of serine/one-carbon metabolic enzymes. Nuclear enrichment of GSK3 significantly suppresses genes that mediate de novo serine synthesis, including PHGDH, PSAT1, PSPH, and one-carbon metabolism, including SHMT2 and MTHFD2. FRAT1 promotes nuclear exclusion of GSK3, enhances serine/one-carbon metabolism, and, as a result, confers cell vulnerability to inhibitors that target this metabolic process such as SHIN1, a specific SHMT1/2 inhibitor. Furthermore, pharmacological or genetic suppression of GSK3 promotes serine/one-carbon metabolism and exhibits a significant synergistic effect in combination with SHIN1 in suppressing cancer cell proliferation in cultured cells and in vivo. Our observations indicate that inhibition of nuclear GSK3 signaling creates a vulnerability, which results in enhanced efficacy of serine/one-carbon metabolism inhibitors for the treatment of cancer.


Subject(s)
Lung Neoplasms , Serine , Adaptor Proteins, Signal Transducing/metabolism , Carbon/metabolism , Glycogen Synthase Kinase 3 , Humans , Lung Neoplasms/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction
15.
J Biol Chem ; 298(6): 102030, 2022 06.
Article in English | MEDLINE | ID: mdl-35577075

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a serine/threonine kinase complex that promotes anabolic processes including protein, lipid, and nucleotide synthesis, while suppressing catabolic processes such as macroautophagy. mTORC1 activity is regulated by growth factors and amino acids, which signal through distinct but integrated molecular pathways: growth factors largely signal through the PI3K/Akt-dependent pathway, whereas the availabilities of amino acids leucine and arginine are communicated to mTORC1 by the Rag-GTPase pathway. While it is relatively well described how acute changes in leucine and arginine levels affect mTORC1 signaling, the effects of prolonged amino acid deprivation remain less well understood. Here, we demonstrate that prolonged deprivation of arginine and/or leucine leads to reactivation of mTORC1 activity, which reaches activation levels similar to those observed in nutrient-rich conditions. Surprisingly, we find that this reactivation is independent of the regeneration of amino acids by canonical autophagy or proteasomal degradation but is dependent on PI3K/Akt signaling. Together, our data identify a novel crosstalk between the amino acid and PI3K/Akt signaling pathways upstream of mTORC1. These observations extend our understanding of the role of mTORC1 in growth-related diseases and indicate that dietary intervention by removal of leucine and/or arginine may be an ineffective therapeutic approach.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Amino Acids , Animals , Arginine/metabolism , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
16.
Nat Metab ; 4(4): 435-443, 2022 04.
Article in English | MEDLINE | ID: mdl-35361954

ABSTRACT

The alteration of metabolic pathways is a critical strategy for cancer cells to attain the traits necessary for metastasis in disease progression. Here, we find that dysregulation of propionate metabolism produces a pro-aggressive signature in breast and lung cancer cells, increasing their metastatic potential. This occurs through the downregulation of methylmalonyl coenzyme A epimerase (MCEE), mediated by an extracellular signal-regulated kinase 2-driven transcription factor Sp1/early growth response protein 1 transcriptional switch driven by metastatic signalling at its promoter level. The loss of MCEE results in reduced propionate-driven anaplerotic flux and intracellular and intratumoral accumulation of methylmalonic acid, a by-product of propionate metabolism that promotes cancer cell invasiveness. Altogether, we present a previously uncharacterized dysregulation of propionate metabolism as an important contributor to cancer and a valuable potential target in the therapeutic treatment of metastatic carcinomas.


Subject(s)
Neoplasms , Propionates , Humans , Methylmalonic Acid/metabolism , Phenotype , Propionates/pharmacology , Signal Transduction
17.
Endocrinology ; 163(6)2022 06 01.
Article in English | MEDLINE | ID: mdl-35366325

ABSTRACT

The mechanistic target of the rapamycin (mTOR) signaling pathway is the central regulator of cell growth and proliferation by integrating growth factor and nutrient availability. Under healthy physiological conditions, this process is tightly coordinated and essential to maintain whole-body homeostasis. Not surprisingly, dysregulated mTOR signaling underpins several diseases with increasing incidence worldwide, including obesity, diabetes, and cancer. Consequently, there is significant clinical interest in developing therapeutic strategies that effectively target this pathway. The transition of mTOR inhibitors from the bench to bedside, however, has largely been marked with challenges and shortcomings, such as the development of therapy resistance and adverse side effects in patients. In this review, we discuss the current status of first-, second-, and third-generation mTOR inhibitors as a cancer therapy in both preclinical and clinical settings, with a particular emphasis on the mechanisms of drug resistance. We focus especially on the emerging role of diet as an important environmental determinant of therapy response, and posit a conceptual framework that links nutrient availability and whole-body metabolic states such as obesity with many of the previously defined processes that drive resistance to mTOR-targeted therapies. Given the role of mTOR as a central integrator of cell metabolism and function, we propose that modulating nutrient inputs through dietary interventions may influence the signaling dynamics of this pathway and compensatory nodes. In doing so, new opportunities for exploiting diet/drug synergies are highlighted that may unlock the therapeutic potential of mTOR inhibitors as a cancer treatment.


Subject(s)
Signal Transduction , TOR Serine-Threonine Kinases , Diet , Humans , Obesity/drug therapy , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
19.
Elife ; 102021 11 30.
Article in English | MEDLINE | ID: mdl-34844667

ABSTRACT

Tumors frequently exhibit aberrant glycosylation, which can impact cancer progression and therapeutic responses. The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a major substrate for glycosylation in the cell. Prior studies have identified the HBP as a promising therapeutic target in pancreatic ductal adenocarcinoma (PDA). The HBP requires both glucose and glutamine for its initiation. The PDA tumor microenvironment is nutrient poor, however, prompting us to investigate how nutrient limitation impacts hexosamine synthesis. Here, we identify that glutamine limitation in PDA cells suppresses de novo hexosamine synthesis but results in increased free GlcNAc abundance. GlcNAc salvage via N-acetylglucosamine kinase (NAGK) is engaged to feed UDP-GlcNAc pools. NAGK expression is elevated in human PDA, and NAGK deletion from PDA cells impairs tumor growth in mice. Together, these data identify an important role for NAGK-dependent hexosamine salvage in supporting PDA tumor growth.


Inside tumors, cancer cells often have to compete with each other for food and other resources they need to survive. This is a key factor driving the growth and progression of cancer. One of the resources cells need is a molecule called UDP-GlcNAc, which they use to modify many proteins so they can work properly. Because cancer cells grow quickly, they likely need much more UDP-GlcNAc than healthy cells. Many tumors, including those derived from pancreatic cancers, have very poor blood supplies, so their cells cannot get the nutrients and other resources they need to grow from the bloodstream. This means that tumor cells have to find new ways to use what they already have. One example of this is developing alternative ways to obtain UDP-GlcNAc. Cells require a nutrient called glutamine to produce UDP-GlcNAc. Limiting the supply of glutamine to cells allows researchers to study how cells are producing UDP-GlcNAc in the lab. Campbell et al. used this approach to study how pancreatic cancer cells obtain UDP-GlcNAc when their access to glutamine is limited. They used a technique called isotope tracing, which allows researchers to track how a specific chemical is processed inside the cell, and what it turns into. The results showed that the pancreatic cancer cells do not make new UDP-GlcNAc but use a protein called NAGK to salvage GlcNAc (another precursor of UDP-GlcNAc), which may be obtained from cellular proteins. Cancer cells that lacked NAGK formed smaller tumors, suggesting that the cells grow more slowly because they cannot recycle UDP-GlcNAc fast enough. Pancreatic cancer is one of the most common causes of cancer deaths and is notable for being difficult to detect and treat. Campbell et al. have identified one of the changes that allows pancreatic cancers to survive and grow quickly. Next steps will include examining the role of NAGK in healthy cells and testing whether it could be targeted for cancer treatment.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Glutamine/deficiency , Hexosamines/metabolism , Pancreatic Neoplasms/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Cell Line , Humans , Mice , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...