Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Stem Cell Res Ther ; 14(1): 53, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36978104

ABSTRACT

National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-based therapies for RPE underscores the relatively advanced stage of RPE cell therapies to patients with several ongoing clinical trials. Thus, this workshop encouraged lessons learned from the RPE field to help accelerate progress in developing stem cell-based therapies in other ocular tissues. This report provides a synthesis of the key points discussed at the Town Hall and highlights needs and opportunities in ocular regenerative medicine.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Retinal Diseases , Humans , Retinal Diseases/therapy , Retinal Diseases/metabolism , Stem Cell Transplantation , Cell- and Tissue-Based Therapy , Induced Pluripotent Stem Cells/metabolism , Retinal Pigment Epithelium/metabolism
2.
Front Cell Dev Biol ; 10: 910040, 2022.
Article in English | MEDLINE | ID: mdl-36092714

ABSTRACT

The therapeutic potential of pluripotent stem cells is great as they promise to usher in a new era of medicine where cells or organs may be prescribed to replace dysfunctional tissue. At the forefront are efforts in the eye to develop this technology as it lends itself to in vivo monitoring and sophisticated non-invasive imaging modalities. In the retina, retinal pigment epithelium (RPE) is the most promising replacement cell as it has a single layer, is relatively simple to transplant, and is associated with several eye diseases. However, after transplantation, the cells may transform and cause complications. This transformation may be partially due to incomplete maturation. With the goal of learning how to mature RPE, we compared induced pluripotent stem cell-derived RPE (iPSC-RPE) cells with adult human primary RPE (ahRPE) cells and the immortalized human ARPE-19 line. We cultured ARPE-19, iPSC-RPE, and ahRPE cells for one month, and evaluated morphology, RPE marker staining, and transepithelial electrical resistance (TEER) as quality control indicators. We then isolated RNA for bulk RNA-sequencing and DNA for genotyping. We genotyped ahRPE lines for the top age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR) risk allele polymorphisms. Transcriptome data verified that both adult and iPSC-RPE exhibit similar RPE gene expression signatures, significantly higher than ARPE-19. In addition, in iPSC-RPE, genes relating to stem cell maintenance, retina development, and muscle contraction were significantly upregulated compared to ahRPE. We compared ahRPE to iPSC-RPE in a model of epithelial-mesenchymal transition (EMT) and observed an increased sensitivity of iPSC-RPE to producing contractile aggregates in vitro which resembles incident reports upon transplantation. P38 inhibition was capable of inhibiting iPSC-RPE-derived aggregates. In summary, we find that the transcriptomic signature of iPSC-RPE conveys an immature RPE state which may be ameliorated by targeting "immature" gene regulatory networks.

3.
STAR Protoc ; 3(2): 101383, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35664254

ABSTRACT

Here, we describe a series of protocols detailing the steps for evaluating SARS-CoV-2 infection in models of the human eye. Included are protocols for whole eye organoid differentiation, SARS-CoV-2 infection, and processing organoids for single-cell RNA sequencing. Additional protocols describe how to dissect and culture adult human ocular cells from cadaver donor eyes and how to compare infection of SARS-CoV-2 and the presence of SARS-CoV-2 entry factors using qPCR, immunofluorescence, and plaque assays. For complete details on the use and execution of this protocol, please refer to Eriksen et al. (2021).


Subject(s)
COVID-19 , Adult , Eye , Humans , Organoids , SARS-CoV-2
4.
Nat Commun ; 13(1): 2796, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589753

ABSTRACT

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.


Subject(s)
NF-E2-Related Factor 2 , Retinal Pigment Epithelium , Animals , Cell Line , Cell Movement , Cicatrix/metabolism , Epithelial-Mesenchymal Transition , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Polymers/metabolism , Rabbits , Retinal Pigment Epithelium/metabolism
5.
Nat Commun ; 12(1): 5675, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584087

ABSTRACT

The retina is a widely profiled tissue in multiple species by single-cell RNA sequencing studies. However, integrative research of the retina across species is lacking. Here, we construct the first single-cell atlas of the human and porcine ocular compartments and study inter-species differences in the retina. In addition to that, we identify putative adult stem cells present in the iris tissue. We also create a disease map of genes involved in eye disorders across compartments of the eye. Furthermore, we probe the regulons of different cell populations, which include transcription factors and receptor-ligand interactions and reveal unique directional signalling between ocular cell types. In addition, we study conservation of regulons across vertebrates and zebrafish to identify common core factors. Here, we show perturbation of KLF7 gene expression during retinal ganglion cells differentiation and conclude that it plays a significant role in the maturation of retinal ganglion cells.


Subject(s)
Cell Differentiation/genetics , Retina/metabolism , Retinal Ganglion Cells/metabolism , Single-Cell Analysis/methods , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Animals , Gene Expression Profiling/methods , Humans , Middle Aged , Retina/cytology , Sequence Analysis, RNA/methods , Species Specificity , Swine
6.
Cell Stem Cell ; 28(7): 1205-1220.e7, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34022129

ABSTRACT

The SARS-CoV-2 pandemic has caused unparalleled disruption of global behavior and significant loss of life. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible routes of entry is essential. While aerosol transmission is thought to be the primary route of spread, viral particles have been detected in ocular fluid, suggesting that the eye may be a vulnerable point of viral entry. To this end, we confirmed SARS-CoV-2 entry factor and antigen expression in post-mortem COVID-19 patient ocular surface tissue and observed productive viral replication in cadaver samples and eye organoid cultures, most notably in limbal regions. Transcriptional analysis of ex vivo infected ocular surface cells and hESC-derived eye cultures revealed robust induction of NF-κB in infected cells as well as diminished type I/III interferon signaling. Together these data suggest that the eye can be directly infected by SARS-CoV-2 and implicate limbus as a portal for viral entry.


Subject(s)
COVID-19 , Human Embryonic Stem Cells , Adult , Epithelium , Humans , Pandemics , SARS-CoV-2
7.
Stem Cell Reports ; 16(2): 237-251, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33450191

ABSTRACT

Recent trials of retinal pigment epithelium (RPE) transplantation for the treatment of disorders such as age-related macular degeneration have been promising. However, limitations of existing strategies include the uncertain survival of RPE cells delivered by cell suspension and the inherent risk of uncontrolled cell proliferation in the vitreous cavity. Human RPE stem cell-derived RPE (hRPESC-RPE) transplantation can rescue vision in a rat model of retinal dystrophy and survive in the rabbit retina for at least 1 month. The present study placed hRPESC-RPE monolayers under the macula of a non-human primate model for 3 months. The transplant was able to recover in vivo and maintained healthy photoreceptors. Importantly, there was no evidence that subretinally transplanted monolayers underwent an epithelial-mesenchymal transition. Neither gliosis in adjacent retina nor epiretinal membranes were observed. These findings suggest that hRPESC-RPE monolayers are safe and may be a useful source for RPE cell replacement therapy.


Subject(s)
Heterografts/transplantation , Macular Degeneration/therapy , Retinal Pigment Epithelium/transplantation , Stem Cell Transplantation/methods , Aged , Aged, 80 and over , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Epithelial-Mesenchymal Transition , Female , Heterografts/pathology , Humans , Immunosuppression Therapy , Macaca fascicularis , Male , Photoreceptor Cells/physiology , Primates , Retina/pathology , Retina/transplantation , Retinal Pigment Epithelium/pathology
8.
SSRN ; : 3650574, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32742243

ABSTRACT

The outbreak of COVID-19 caused by the SARS-CoV-2 virus has created an unparalleled disruption of global behavior and a significant loss of human lives. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible viral entry routes is essential. As aerosol transmission is thought to be the primary route of spread, we sought to investigate whether the eyes are potential entry portals for SARS-CoV-2. While virus has been detected in the eye, in order for this mucosal membrane to be a bone fide entry source SARS-CoV-2 would need the capacity to productively infect ocular surface cells.  As such, we conducted RNA sequencing in ocular cells isolated from adult human cadaver donor eyes as well as from a pluripotent stem cell-derived whole eye organoid model to evaluate the expression of ACE2 and TMPRSS2, essential proteins that mediate SARS-CoV-2 viral entry. We also infected eye organoids and adult human ocular cells with SARS-CoV-2 and evaluated virus replication and the host response to infection. We found the limbus was most susceptible to infection, whereas the central cornea exhibited only low levels of replication. Transcriptional profiling of the limbus upon SARS-CoV-2 infection, found that while type I or III interferons were not detected in the lung epithelium, a significant inflammatory response was mounted. Together these data suggest that the human eye can be directly infected by SARS-CoV-2 and thus is a route warranting protection. Funding: The National Eye Institute (NEI), Bethesda, MD, USA, extramural grant 1R21EY030215-01 and the Icahn School of Medicine at Mount Sinai supported this study.

9.
Stem Cell Reports ; 14(4): 631-647, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32243845

ABSTRACT

Epithelial to mesenchymal transition (EMT) is a biological process involved in tissue morphogenesis and disease that causes dramatic changes in cell morphology, migration, proliferation, and gene expression. The retinal pigment epithelium (RPE), which supports the neural retina, can undergo EMT, producing fibrous epiretinal membranes (ERMs) associated with vision-impairing clinical conditions, such as macular pucker and proliferative vitreoretinopathy (PVR). We found that co-treatment with TGF-ß and TNF-α (TNT) accelerates EMT in adult human RPE stem cell-derived RPE cell cultures. We captured the global epigenomic and transcriptional changes elicited by TNT treatment of RPE and identified putative active enhancers associated with actively transcribed genes, including a set of upregulated transcription factors that are candidate regulators. We found that the vitamin B derivative nicotinamide downregulates these key transcriptional changes, and inhibits and partially reverses RPE EMT, revealing potential therapeutic routes to benefit patients with ERM, macular pucker and PVR.


Subject(s)
Epigenomics , Epiretinal Membrane/prevention & control , Epithelial-Mesenchymal Transition , Models, Biological , Niacinamide/therapeutic use , Retinal Pigment Epithelium/pathology , Stem Cells/metabolism , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Enhancer Elements, Genetic/genetics , Epiretinal Membrane/pathology , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation/drug effects , Humans , Middle Aged , Niacinamide/genetics , Niacinamide/pharmacology , Phenotype , Stem Cells/drug effects , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Transforming Growth Factor beta1/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
10.
Commun Biol ; 2: 162, 2019.
Article in English | MEDLINE | ID: mdl-31069271

ABSTRACT

Proliferative vitreoretinopathy (PVR) is a metaplasia in the vitreous of the eye manifested by the transformation of retinal pigment epithelial (RPE) cells and the development of contracting epiretinal membranes (ERM), which lead to retinal detachment and vision loss. While TGFß1 and TNFα have been associated with PVR, here we show that these cytokines act synergistically to induce an aggressive contraction phenotype on adult human (ah)RPE. Connected RPE detach upon contraction and form motile membranes that recruit more cells. TGFß1 and TNFα (TNT)-induced contracting membranes uniquely express muscle and extracellular rearrangement genes. Whole transcriptome RNA sequencing of patient-dissected PVR membranes showed activation of the p38-MAPK signaling pathway. Inhibition of p38 during TNT treatment blocks ahRPE transformation and membrane contraction. Furthermore, TNT-induced membrane contractility can be reversed by p38 inhibition after induction. Therefore, targeting the p38-MAPK pathway may have therapeutic benefits for patients with PVR even after the onset of contracting ERMs.


Subject(s)
Epiretinal Membrane/genetics , Retinal Detachment/genetics , Transforming Growth Factor beta1/genetics , Tumor Necrosis Factor-alpha/genetics , Vitreoretinopathy, Proliferative/genetics , p38 Mitogen-Activated Protein Kinases/genetics , Adult , Aged , Aged, 80 and over , Cell Movement , Epiretinal Membrane/metabolism , Epiretinal Membrane/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Models, Biological , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Retinal Detachment/metabolism , Retinal Detachment/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Signal Transduction , Time-Lapse Imaging , Transcriptome , Transforming Growth Factor beta1/antagonists & inhibitors , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology , Vitreous Body/metabolism , Vitreous Body/pathology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Front Immunol ; 10: 708, 2019.
Article in English | MEDLINE | ID: mdl-31118929

ABSTRACT

Ocular toxoplasmosis is the commonest clinical manifestation of infection with obligate intracellular parasite, Toxoplasma gondii. Active ocular toxoplasmosis is characterized by replication of T. gondii tachyzoites in the retina, with reactive inflammation. The multifunctional retinal pigment epithelium is a key target cell population for T. gondii. Since the global gene expression profile is germane to understanding molecular involvements of retinal pigment epithelial cells in ocular toxoplasmosis, we performed RNA-Sequencing (RNA-Seq) of human cells following infection with T. gondii tachyzoites. Primary cell isolates from eyes of cadaveric donors (n = 3), and the ARPE-19 human retinal pigment epithelial cell line, were infected for 24 h with GT-1 strain T. gondii tachyzoites (multiplicity of infection = 5) or incubated uninfected as control. Total and small RNA were extracted from cells and sequenced on the Illumina NextSeq 500 platform; results were aligned to the human hg19 reference sequence. Multidimensional scaling showed good separation between transcriptomes of infected and uninfected primary cell isolates, which were compared in edgeR software. This differential expression analysis revealed a sizeable response in the total RNA transcriptome-with significantly differentially expressed genes totaling 7,234 (28.9% of assigned transcripts)-but very limited changes in the small RNA transcriptome-totaling 30 (0.35% of assigned transcripts) and including 8 microRNA. Gene ontology and pathway enrichment analyses of differentially expressed total RNA in CAMERA software, identified a strong immunologic transcriptomic signature. We conducted RT-qPCR for 26 immune response-related protein-coding and long non-coding transcripts in epithelial cell isolates from different cadaveric donors (n = 3), extracted by a different isolation protocol but similarly infected with T. gondii, to confirm immunological activity of infected cells. For microRNA, increases in miR-146b and miR-212 were detected by RT-qPCR in 2 and 3 of these independent cell isolates. Biological network analysis in the InnateDB platform, including 735 annotated differentially expressed genes plus 2,046 first-order interactors, identified 10 contextural hubs and 5 subnetworks in the transcriptomic immune response of cells to T. gondii. Our observations provide a solid base for future studies of molecular and cellular interactions between T. gondii and the human retinal pigment epithelium to illuminate mechanisms of ocular toxoplasmosis.


Subject(s)
Retinal Pigment Epithelium/immunology , Retinal Pigment Epithelium/parasitology , Toxoplasma/immunology , Toxoplasma/pathogenicity , Toxoplasmosis, Ocular/genetics , Toxoplasmosis, Ocular/immunology , Aged , Cadaver , Cell Culture Techniques , Cell Line , Cell Separation , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Humans , Immunogenetic Phenomena , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , RNA-Seq , Retinal Pigment Epithelium/cytology , Toxoplasmosis, Ocular/parasitology
12.
Elife ; 82019 01 09.
Article in English | MEDLINE | ID: mdl-30624204

ABSTRACT

The rules governing cerebellar output are not fully understood, but must involve Purkinje cell (PC) activity, as PCs are the major input to deep cerebellar nuclear (DCN) cells (which form the majority of cerebellar output). Here, the influence of PC complex spikes (CSs) was investigated by simultaneously recording DCN activity with CSs from PC arrays in anesthetized rats. Crosscorrelograms were used to identify PCs that were presynaptic to recorded DCN cells (presynaptic PCs). Such PCs were located within rostrocaudal cortical strips and displayed synchronous CS activity. CS-associated modulation of DCN activity included a short-latency post-CS inhibition and long-latency excitations before and after the CS. The amplitudes of the post-CS responses correlated with the level of synchronization among presynaptic PCs. A temporal precision of ≤10 ms was generally required for CSs to be maximally effective. The results suggest that CS synchrony is a key control parameter of cerebellar output. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Action Potentials , Cerebellum/physiology , Purkinje Cells/physiology , Animals , Cerebral Cortex/physiology , Databases, Factual , Electric Stimulation , Female , Neurons/physiology , Olivary Nucleus/physiology , Rats , Rats, Sprague-Dawley , Synapses/physiology
13.
Proc Natl Acad Sci U S A ; 115(36): 9014-9019, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30126999

ABSTRACT

Abnormally enlarged early endosomes (EEs) are pathological features of neurodegenerative diseases, yet insight into the mechanisms and consequences of EE expansion remains elusive. Here, we report swollen apical EEs in the retinal pigment epithelium (RPE) of aged human donors and in the pigmented Abca4-/- mouse model of Stargardt early-onset macular degeneration. Using high-resolution live-cell imaging, we show that age-related and pathological accumulation of lipofuscin bisretinoids increases ceramide at the apical surface of the RPE, which promotes inward budding and homotypic fusion of EEs. These enlarged endosomes internalize the complement protein C3 into the RPE, resulting in the intracellular generation of C3a fragments. Increased C3a in turn activates the mechanistic target of rapamycin (mTOR), a regulator of critical metabolic processes such as autophagy. The antidepressant desipramine, which decreases ceramide levels by inhibiting acid sphingomyelinase, corrects EE defects in the RPE of Abca4-/- mice. This prevents C3 internalization and limits the formation of C3a fragments within the RPE. Although uncontrolled complement activation is associated with macular degenerations, how complement contributes to pathology in a progressive disease is not well understood. Our studies link expansion of the EE compartment with intracellular complement generation and aberrant mTOR activation, which could set the stage for chronic metabolic reprogramming in the RPE as a prelude to disease. The pivotal role of ceramide in driving EE biogenesis and fusion in the Abca4-/- mice RPE suggests that therapeutic targeting of ceramide could be effective in Stargardt disease and other macular degenerations.


Subject(s)
Complement C3a/metabolism , Endosomes/metabolism , Macular Degeneration/congenital , Retinal Pigment Epithelium/metabolism , TOR Serine-Threonine Kinases/metabolism , ATP-Binding Cassette Transporters/deficiency , Aged , Aged, 80 and over , Animals , Ceramides/genetics , Ceramides/metabolism , Complement C3a/genetics , Disease Models, Animal , Endosomes/genetics , Endosomes/pathology , Female , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Mice , Mice, Knockout , Retinal Pigment Epithelium/pathology , Stargardt Disease , Swine , TOR Serine-Threonine Kinases/genetics
14.
Curr Protoc Stem Cell Biol ; 45(1): e53, 2018 05.
Article in English | MEDLINE | ID: mdl-30040247

ABSTRACT

An adult human retinal pigment epithelial layer (ahRPE) model derived from stem cells isolated from native RPE monolayers (ahRPE-SCs) exhibits key physiological characteristics of native tissue and therefore provides the means to create a human "disease in a dish" model to study RPE diseases. Traditionally, RPE lines are established from whole globes dedicated to research. Here we describe a new technique for establishing primary RPE lines from the posterior poles of globes used for corneal transplants. Since tissues from corneal transplants are derived from younger and healthier donors than those used for research, we have hypothesized that RPE cells isolated from corneal transplantation globes will result in improved primary RPE line establishment. Our new procedure increases the rate of establishing successful RPE cultures and improves the total cell number yield. Use of this advanced methodology can provide a new source of high-quality primary RPE line cultures. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Corneal Transplantation , Models, Biological , Retinal Pigment Epithelium/cytology , Stem Cells/cytology , Adult , Cell Proliferation , Cell Separation , Electric Impedance , Epithelial Cells/cytology , Humans , Phenotype , Stem Cells/metabolism
15.
Stem Cell Reports ; 9(1): 42-49, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28625537

ABSTRACT

Age-related macular degeneration (AMD) is a common cause of central visual loss in the elderly. Retinal pigment epithelial (RPE) cell loss occurs early in the course of AMD and RPE cell transplantation holds promise to slow disease progression. We report that subretinal transplantation of RPE stem cell (RPESC)-derived RPE cells (RPESC-RPE) preserved vision in a rat model of RPE cell dysfunction. Importantly, the stage of differentiation that RPESC-RPE acquired prior to transplantation influenced the efficacy of vision rescue. Whereas cells at all stages of differentiation tested rescued photoreceptor layer morphology, an intermediate stage of RPESC-RPE differentiation obtained after 4 weeks of culture was more consistent at vision rescue than progeny that were differentiated for 2 weeks or 8 weeks of culture. Our results indicate that the developmental stage of RPESC-RPE significantly influences the efficacy of RPE cell replacement, which affects the therapeutic application of these cells for AMD.


Subject(s)
Adult Stem Cells/cytology , Cell Differentiation , Macular Degeneration/therapy , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/transplantation , Animals , Cell Culture Techniques , Cells, Cultured , Humans , Macular Degeneration/pathology , Rats , Retinal Pigment Epithelium/pathology , Swine , Vision, Ocular
16.
Cell Stem Cell ; 20(5): 635-647.e7, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28132833

ABSTRACT

Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins, and those from the AMD donors show significantly increased complement and inflammatory factors, which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening, combined with transcriptome analysis, we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome, ribosome, and chromatin-modifying genes. Thus, targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.


Subject(s)
Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Niacinamide/therapeutic use , Cell Differentiation/drug effects , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Genotype , Humans , Immunohistochemistry , Retina/drug effects , Retina/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Vascular Endothelial Growth Factor A/metabolism
17.
Stem Cells Transl Med ; 5(11): 1562-1574, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27400791

ABSTRACT

: Induced pluripotent stem cells (iPSCs) can be efficiently differentiated into retinal pigment epithelium (RPE), offering the possibility of autologous cell replacement therapy for retinal degeneration stemming from RPE loss. The generation and maintenance of epithelial apical-basolateral polarity is fundamental for iPSC-derived RPE (iPSC-RPE) to recapitulate native RPE structure and function. Presently, no criteria have been established to determine clonal or donor based heterogeneity in the polarization and maturation state of iPSC-RPE. We provide an unbiased structural, molecular, and physiological evaluation of 15 iPSC-RPE that have been derived from distinct tissues from several different donors. We assessed the intact RPE monolayer in terms of an ATP-dependent signaling pathway that drives critical aspects of RPE function, including calcium and electrophysiological responses, as well as steady-state fluid transport. These responses have key in vivo counterparts that together help determine the homeostasis of the distal retina. We characterized the donor and clonal variation and found that iPSC-RPE function was more significantly affected by the genetic differences between different donors than the epigenetic differences associated with different starting tissues. This study provides a reference dataset to authenticate genetically diverse iPSC-RPE derived for clinical applications. SIGNIFICANCE: The retinal pigment epithelium (RPE) is essential for maintaining visual function. RPE derived from human induced pluripotent stem cells (iPSC-RPE) offer a promising cell-based transplantation therapy for slowing or rescuing RPE-induced visual function loss. For effective treatment, iPSC-RPE must recapitulate the physiology of native human RPE. A set of physiologically relevant functional assays are provided that assess the polarized functional activity and maturation state of the intact RPE monolayer. The present data show that donor-to-donor variability exceeds the tissue-to-tissue variability for a given donor and provides, for the first time, criteria necessary to identify iPSC-RPE most suitable for clinical application.

18.
J Ocul Pharmacol Ther ; 32(5): 331-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27191513

ABSTRACT

PURPOSE: Assessing the morphologic properties of cells in microscopy images is an important task to evaluate cell health, identity, and purity. Typically, subjective visual assessments are accomplished by an experienced researcher. This subjective human step makes transfer of the evaluation process from the laboratory to the cell manufacturing facility difficult and time consuming. METHODS: Automated image analysis can provide rapid, objective measurements of cultured cells, greatly aiding manufacturing, regulatory, and research goals. Automated algorithms for classifying images based on appearance characteristics typically either extract features from the image and use those features for classification or use the images directly as input to the classification algorithm. In this study we have developed both feature and nonfeature extraction methods for automatically measuring "cobblestone" structure in human retinal pigment epithelial (RPE) cell cultures. RESULTS: A new approach using image compression combined with a Kolmogorov complexity-based distance metric enables robust classification of microscopy images of RPE cell cultures. The automated measurements corroborate determinations made by experienced cell biologists. We have also developed an approach for using steerable wavelet filters for extracting features to characterize the individual cellular junctions. CONCLUSIONS: Two image analysis techniques enable robust and accurate characterization of the cobblestone morphology that is indicative of viable RPE cultures for therapeutic applications.


Subject(s)
Cell Culture Techniques , Cell Shape , Image Interpretation, Computer-Assisted/methods , Retinal Pigment Epithelium/cytology , Stem Cells/cytology , Algorithms , Automation , Cells, Cultured , Epithelial-Mesenchymal Transition , Humans , Pattern Recognition, Automated/methods
19.
J Ocul Pharmacol Ther ; 32(5): 304-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27182605

ABSTRACT

PURPOSE: Numerous preclinical studies have shown that transplantation of stem cell-derived retinal pigment epithelial cell (RPE) preserves photoreceptor cell anatomy in the dystrophic Royal College of Surgeons (RCS) rat. How rescue is spatially distributed over the eye, relative to the transplantation site, is less clear. To understand spatial variations in transplant efficacy, we have developed a method to measure the spatial distribution of rescued photoreceptor cells. METHODS: Human RPE Stem Cell-derived RPE (RPESC-RPE) cells were subretinally injected into RCS rat eyes. After tissue recovery and orientating the globe, a series of retinal sections were cut through the injected area. Sections were stained with DAPI (4',6-diamidino-2-phenylindole) and a number of photoreceptor nuclei were counted across the nasal-temporal and superior-inferior axes. These data were used to construct 2D maps of the area of photoreceptor cell saving. RESULTS: Photoreceptor cell preservation was detected in the injected temporal hemisphere and occupied areas greater than 4 mm(2) centered near the injection sites. Rescue was directed toward the central retina and superior and inferior poles, with maximal number of rescued photoreceptor cells proximal to the injection sites. CONCLUSIONS: RPESC-RPE transplantation preserves RCS photoreceptor cells. The photoreceptor cell contour maps readily convey the extent of rescue across the eye. The consistent alignment and quantification of results using this method allow the application of other downstream statistical analyses and comparisons to better understand transplantation therapy in the eye.


Subject(s)
Photoreceptor Cells, Vertebrate , Retinal Pigment Epithelium/cytology , Stem Cells , Animals , Humans , Rats , Rats, Long-Evans , Rats, Mutant Strains
20.
Adv Exp Med Biol ; 854: 731-7, 2016.
Article in English | MEDLINE | ID: mdl-26427482

ABSTRACT

Transient expression of exogenous proteins facilitates studies of molecular mechanisms and utility for transplantation of retinal pigment epithelial (RPE) cells in culture. Here, we compared expression of the membrane protein ß5 integrin-GFP (ß5-GFP) in two recently established models of differentiated human RPE, adult RPE stem cell-derived RPE and primary fetal RPE, upon infection with recombinant adenovirus or transfection with DNA in liposomes. We varied viral titer and duration of virus incubation and examined ß5-GFP and the tight junction marker ZO-1 in manipulated cells by confocal microscopy. Fewer than 5 % of cells expressed ß5-GFP after liposome-mediated transfection. The percentage of cells with detectable ß5-GFP exceeded 90 % after adenovirus infection for as little as 1 h. Decreasing virus titer two-fold did not alter the fraction of cells expressing ß5-GFP but increased variability of ß5-GFP level among cells. In cells with low expression levels, ß5-GFP localized mostly to the apical plasma membrane like endogenous αvß5 integrin. In cells with high expression levels, ß5-GFP localized to the cytoplasm in addition to the apical surface suggesting accumulation in trafficking compartments. Altogether, adenovirus delivery yields efficient exogenous membrane protein expression of correct polarity in differentiated human RPE cells in culture.


Subject(s)
Adenoviridae/genetics , Membrane Proteins/genetics , Pigment Epithelium of Eye/metabolism , Cell Polarity , Cells, Cultured , Epithelial Cells/metabolism , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Liposomes , Membrane Proteins/metabolism , Microscopy, Confocal , Pigment Epithelium of Eye/cytology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reproducibility of Results , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL