Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Immun Ageing ; 21(1): 32, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760856

ABSTRACT

BACKGROUND: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-ß42 (Aß42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. RESULTS: A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aß-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aß42 (ß = -12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (ß = 26.812, p = 0.019) and p-tau (ß = 3.441, p = 0.015), but not Aß42. In the NYU cohort alone, subjects classified as Aß + (n = 38) displayed a stronger association between the NLR and t-tau (ß = 100.476, p = 0.037) compared to Aß- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. CONCLUSIONS: We report associations between the NLR and Aß42 in the older ADNI cohort, and between the NLR and t-tau and p-tau in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.

2.
Res Sq ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559231

ABSTRACT

Background: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-ß42 (Aß42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. Results: A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aß-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aß42 (ß=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (ß = 26.812, p = 0.019) and p-tau (ß = 3.441, p = 0.015), but not Aß42. In the NYU cohort alone, subjects classified as Aß+ (n = 38) displayed a stronger association between the NLR and t-tau (ß = 100.476, p = 0.037) compared to Aß- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. Conclusions: We report associations between the NLR and Aß42 in the older ADNI cohort, and between the NLR and t-tau and p-tau181 in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.

3.
Brain Commun ; 5(2): fcad074, 2023.
Article in English | MEDLINE | ID: mdl-37056479

ABSTRACT

The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-ß 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-ß 42/amyloid-ß 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.

4.
Transl Psychiatry ; 13(1): 64, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810280

ABSTRACT

Post-traumatic stress disorder (PTSD) is a mental disorder diagnosed by clinical interviews, self-report measures and neuropsychological testing. Traumatic brain injury (TBI) can have neuropsychiatric symptoms similar to PTSD. Diagnosing PTSD and TBI is challenging and more so for providers lacking specialized training facing time pressures in primary care and other general medical settings. Diagnosis relies heavily on patient self-report and patients frequently under-report or over-report their symptoms due to stigma or seeking compensation. We aimed to create objective diagnostic screening tests utilizing Clinical Laboratory Improvement Amendments (CLIA) blood tests available in most clinical settings. CLIA blood test results were ascertained in 475 male veterans with and without PTSD and TBI following warzone exposure in Iraq or Afghanistan. Using random forest (RF) methods, four classification models were derived to predict PTSD and TBI status. CLIA features were selected utilizing a stepwise forward variable selection RF procedure. The AUC, accuracy, sensitivity, and specificity were 0.730, 0.706, 0.659, and 0.715, respectively for differentiating PTSD and healthy controls (HC), 0.704, 0.677, 0.671, and 0.681 for TBI vs. HC, 0.739, 0.742, 0.635, and 0.766 for PTSD comorbid with TBI vs HC, and 0.726, 0.723, 0.636, and 0.747 for PTSD vs. TBI. Comorbid alcohol abuse, major depressive disorder, and BMI are not confounders in these RF models. Markers of glucose metabolism and inflammation are among the most significant CLIA features in our models. Routine CLIA blood tests have the potential for discriminating PTSD and TBI cases from healthy controls and from each other. These findings hold promise for the development of accessible and low-cost biomarker tests as screening measures for PTSD and TBI in primary care and specialty settings.


Subject(s)
Brain Injuries, Traumatic , Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Veterans , Humans , Male , Stress Disorders, Post-Traumatic/psychology , Veterans/psychology , Laboratories, Clinical , Hematologic Tests
5.
Schizophr Bull ; 49(1): 34-42, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36370124

ABSTRACT

OBJECTIVES: Disengagement from treatment is common in first episode schizophrenia (FES) and is associated with poor outcomes. Our aim was to determine whether hippocampal subfield volumes predict disengagement during maintenance treatment of FES. METHODS: FES patients were recruited from sites in Boston, New York, Shanghai, and Changsha. After stabilization on antipsychotic medication, participants were randomized to add-on citalopram or placebo and followed for 12 months. Demographic, clinical and cognitive factors at baseline were compared between completers and disengagers in addition to volumes of hippocampal subfields. RESULTS: Baseline data were available for 95 randomized participants. Disengagers (n = 38, 40%) differed from completers (n = 57, 60%) by race (more likely Black; less likely Asian) and in more alcohol use, parkinsonism, negative symptoms and more impairment in visual learning and working memory. Bilateral dentate gyrus (DG), CA1, CA2/3 and whole hippocampal volumes were significantly smaller in disengagers compared to completers. When all the eight volumes were entered into the model simultaneously, only left DG volume significantly predicted disengagement status and remained significant after adjusting for age, sex, race, intracranial volume, antipsychotic dose, duration of untreated psychosis, citalopram status, alcohol status, and smoking status (P < .01). Left DG volume predicted disengagement with 57% sensitivity and 83% specificity. CONCLUSIONS: Smaller left DG was significantly associated with disengagement status over 12 months of maintenance treatment in patients with FES participating in a randomized clinical trial. If replicated, these findings may provide a biomarker to identify patients at risk for disengagement and a potential target for interventions.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Citalopram/pharmacology , Citalopram/therapeutic use , China , Hippocampus/diagnostic imaging , Psychotic Disorders/diagnosis , Magnetic Resonance Imaging
6.
J Neurosci ; 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36002264

ABSTRACT

A particularly elusive puzzle concerning the hippocampus is how the structural differences along its long, anteroposterior axis might beget meaningful functional differences, particularly in terms of the granularity of information processing. One measure posits to quantify this granularity by calculating the average statistical independence of the BOLD signal across neighboring voxels, or inter-voxel similarity (IVS), and has shown the anterior hippocampus to process coarser-grained information than the posterior hippocampus. This measure, however, has yielded opposing results in studies of developmental and healthy aging samples, which also varied in fMRI acquisition parameters and hippocampal parcellation methods. In order to reconcile these findings, we measured IVS across two separate resting-state fMRI acquisitions and compared the results across many of the most widely used parcellation methods in a large young-adult sample of male and female humans (Acquisition 1, N = 233; Acquisition 2, N = 176). Finding conflicting results across acquisitions and parcellations, we reasoned that a data-driven approach to hippocampal parcellation is necessary. To this end, we implemented a group masked independent components analysis (mICA) to identify functional subunits of the hippocampus, most notably separating the anterior hippocampus into separate anterior-medial, anterior-lateral, and posteroanterior-lateral components. Measuring IVS across these components revealed a decrease in IVS along the medial-lateral axis of the anterior hippocampus but an increase from anterior to posterior. We conclude that inter-voxel similarity is deeply affected by parcellation, and that grounding one's parcellation in a functionally informed approach might allow for a more complex and reliable characterization of the hippocampus.SIGNIFICANCE STATEMENT:Processing information along hierarchical scales of granularity is critical for many of the feats of cognition considered most human. Recently, the changes in structure, cortical connectivity, and apparent functional properties across parcels of the hippocampal long axis have been hypothesized to underlie this hierarchical gradient in information processing. We show here, however, that the choice of parcellation method itself drastically affects one particular measure of granularity across the hippocampus, and that a functionally informed approach to parcellation reveals gradients both within the anterior hippocampus and in non-linear form across the long axis. These results point to the issue of parcellation as a critical one in the study of the hippocampus and reorient interpretation of existing results.

7.
Neurobiol Dis ; 171: 105748, 2022 09.
Article in English | MEDLINE | ID: mdl-35550158

ABSTRACT

BACKGROUND: Preclinical studies suggest body temperature (Tb) and consequently brain temperature has the potential to bidirectionally interact with tau pathology in Alzheimer's Disease (AD). Tau phosphorylation is substantially increased by a small (<1 °C) decrease in temperature within the human physiological range, and thermoregulatory nuclei are affected by tau pathology early in the AD continuum. In this study we evaluated whether Tb (as a proxy for brain temperature) is cross-sectionally associated with clinically utilized markers of tau pathology in cognitively normal older adults. METHODS: Tb was continuously measured with ingestible telemetry sensors for 48 h. This period included two nights of nocturnal polysomnography to delineate whether Tb during waking vs sleep is differentially associated with tau pathology. Tau phosphorylation was assessed with plasma and cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (P-tau), sampled the day following Tb measurement. In addition, neurofibrillary tangle (NFT) burden in early Braak stage regions was imaged with PET-MR using the [18F]MK-6240 radiotracer on average one month later. RESULTS: Lower Tb was associated with increased NFT burden, as well as increased plasma and CSF P-tau levels (p < 0.05). NFT burden was associated with lower Tb during waking (p < 0.05) but not during sleep intervals. Plasma and CSF P-tau levels were highly correlated with each other (p < 0.05), and both variables were correlated with tau tangle radiotracer uptake (p < 0.05). CONCLUSIONS: These results, the first available for human, suggest that lower Tb in older adults may be associated with increased tau pathology. Our findings add to the substantial preclinical literature associating lower body and brain temperature with tau hyperphosphorylation. CLINICAL TRIAL NUMBER: NCT03053908.


Subject(s)
Alzheimer Disease , tau Proteins , Aged , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid , Body Temperature , Brain/metabolism , Humans , Neurofibrillary Tangles/metabolism , Positron-Emission Tomography , tau Proteins/metabolism
8.
J Clin Med ; 10(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34300177

ABSTRACT

Sleep disorders, despite being very frequent in adults with Down syndrome (DS), are often overlooked due to a lack of awareness by families and physicians and the absence of specific clinical sleep guidelines. Untreated sleep disorders have a negative impact on physical and mental health, behavior, and cognitive performance. Growing evidence suggests that sleep disruption may also accelerate the progression to symptomatic Alzheimer's disease (AD) in this population. It is therefore imperative to have a better understanding of the sleep disorders associated with DS in order to treat them, and in doing so, improve cognition and quality of life, and prevent related comorbidities. This paper reviews the current knowledge of the main sleep disorders in adults with DS, including evaluation and management. It highlights the existing gaps in knowledge and discusses future directions to achieve earlier diagnosis and better treatment of sleep disorders most frequently found in this population.

9.
Psychiatry Res Neuroimaging ; 312: 111286, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33857750

ABSTRACT

Hippocampal volume loss is prominent in first episode schizophrenia (FES) and has been associated with poor clinical outcomes and with BDNF genotype; antidepressants are believed to reverse hippocampal volume loss via release of BDNF. In a 12-month, placebo-controlled add-on trial of the antidepressant, citalopram, during the maintenance phase of FES, negative symptoms were improved with citalopram. We now report results of structural brain imaging at baseline and 6 months in 63 FES patients (34 in citalopram group) from the trial to assess whether protection against hippocampal volume loss contributed to improved negative symptoms with citalopram. Hippocampal volumetric integrity (HVI) did not change significantly in the citalopram or placebo group and did not differ between treatment groups, whereas citalopram was associated with greater volume loss of the right CA1 subfield. Change in cortical thickness was associated with SANS change in 4 regions (left rostral anterior cingulate, right frontal pole, right cuneus, and right transverse temporal) but none differed between treatment groups. Our findings suggest that minimal hippocampal volume loss occurs after stabilization on antipsychotic treatment and that citalopram's potential benefit for negative symptoms is unlikely to result from protection against hippocampal volume loss or cortical thinning.


Subject(s)
Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/therapeutic use , Citalopram/pharmacology , Citalopram/therapeutic use , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy
10.
JAMA Psychiatry ; 78(4): 380-386, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33502436

ABSTRACT

Importance: To date, the association of psychiatric diagnoses with mortality in patients infected with coronavirus disease 2019 (COVID-19) has not been evaluated. Objective: To assess whether a diagnosis of a schizophrenia spectrum disorder, mood disorder, or anxiety disorder is associated with mortality in patients with COVID-19. Design, Setting, and Participants: This retrospective cohort study assessed 7348 consecutive adult patients for 45 days following laboratory-confirmed COVID-19 between March 3 and May 31, 2020, in a large academic medical system in New York. The final date of follow-up was July 15, 2020. Patients without available medical records before testing were excluded. Exposures: Patients were categorized based on the following International Statistical Classification of Diseases, Tenth Revision, Clinical Modification diagnoses before their testing date: (1) schizophrenia spectrum disorders, (2) mood disorders, and (3) anxiety disorders. Patients with these diagnoses were compared with a reference group without psychiatric disorders. Main Outcomes and Measures: Mortality, defined as death or discharge to hospice within 45 days following a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test result. Results: Of the 26 540 patients tested, 7348 tested positive for SARS-CoV-2 (mean [SD] age, 54 [18.6] years; 3891 [53.0%] women). Of eligible patients with positive test results, 75 patients (1.0%) had a history of a schizophrenia spectrum illness, 564 (7.7%) had a history of a mood disorder, and 360 (4.9%) had a history of an anxiety disorder. After adjusting for demographic and medical risk factors, a premorbid diagnosis of a schizophrenia spectrum disorder was significantly associated with mortality (odds ratio [OR], 2.67; 95% CI, 1.48-4.80). Diagnoses of mood disorders (OR, 1.14; 95% CI, 0.87-1.49) and anxiety disorders (OR, 0.96; 95% CI, 0.65-1.41) were not associated with mortality after adjustment. In comparison with other risk factors, a diagnosis of schizophrenia ranked behind only age in strength of an association with mortality. Conclusions and Relevance: In this cohort study of adults with SARS-CoV-2-positive test results in a large New York medical system, adults with a schizophrenia spectrum disorder diagnosis were associated with an increased risk for mortality, but those with mood and anxiety disorders were not associated with a risk of mortality. These results suggest that schizophrenia spectrum disorders may be a risk factor for mortality in patients with COVID-19.


Subject(s)
Anxiety Disorders , COVID-19 , Mood Disorders , SARS-CoV-2/isolation & purification , Schizophrenia , Anxiety Disorders/diagnosis , Anxiety Disorders/epidemiology , COVID-19/mortality , COVID-19/therapy , Comorbidity , Female , Humans , International Classification of Diseases , Male , Middle Aged , Mood Disorders/diagnosis , Mood Disorders/epidemiology , Mortality , New York/epidemiology , Retrospective Studies , Risk Assessment , Risk Factors , Schizophrenia/diagnosis , Schizophrenia/epidemiology
11.
Psychiatr Res Clin Pract ; 3(4): 153-162, 2021.
Article in English | MEDLINE | ID: mdl-35211666

ABSTRACT

BACKGROUND AND OBJECTIVE: Posttraumatic stress disorder (PTSD) is a serious and frequently debilitating psychiatric condition that can occur in people who have experienced traumatic stessors, such as war, violence, sexual assault and other life-threatening events. Treatment of PTSD and traumatic brain injury (TBI) in veterans is challenged by diagnostic complexity, partially due to PTSD and TBI symptom overlap and to the fact that subjective self-report assessments may be influenced by a patient's willingness to share their traumatic experiences and resulting symptoms. Corticotropin-releasing factor (CRF) is one of the main mediators of hypothalamic pituitary adrenal (HPA)-axis responses in stress and anxiety. METHODS AND RESULTS: We analyzed serum CRF levels in 230 participants including heathy controls (64), and individuals with PTSD (53), TBI (70) or PTSD+TBI (43) by enzyme immunoassay (EIA). Significantly lower CRF levels were found in both the PTSD and PTSD+TBI groups compared to healthy control (PTSD vs Controls: P=0.0014, PTSD + TBI vs Controls: P=0.0011) and chronic TBI participants (PTSD vs TBI: P<0.0001PTSD + TBI vs TBI: P<0.0001) , suggesting a PTSD-related mechanism independent from TBI and associated with CRF reduction. CRF levels negatively correlated with PTSD severity on the CAPS-5 scale in the whole study group. CONCLUSIONS: Hyperactivation of the HPA axis has been classically identified in acute stress. However, the recognized enhanced feedback inhibition of the HPA axis in chronic stress supports our findings of lower CRF in PTSD patients. This study suggests that reduced serum CRF in PTSD should be further investigated. Future validation studies will establish if CRF is a possible blood biomarker for PTSD and/or for differentiating PTSD and chronic TBI symptomatology.

12.
Mol Psychiatry ; 26(9): 5011-5022, 2021 09.
Article in English | MEDLINE | ID: mdl-32488126

ABSTRACT

Active-duty Army personnel can be exposed to traumatic warzone events and are at increased risk for developing post-traumatic stress disorder (PTSD) compared with the general population. PTSD is associated with high individual and societal costs, but identification of predictive markers to determine deployment readiness and risk mitigation strategies is not well understood. This prospective longitudinal naturalistic cohort study-the Fort Campbell Cohort study-examined the value of using a large multidimensional dataset collected from soldiers prior to deployment to Afghanistan for predicting post-deployment PTSD status. The dataset consisted of polygenic, epigenetic, metabolomic, endocrine, inflammatory and routine clinical lab markers, computerized neurocognitive testing, and symptom self-reports. The analysis was computed on active-duty Army personnel (N = 473) of the 101st Airborne at Fort Campbell, Kentucky. Machine-learning models predicted provisional PTSD diagnosis 90-180 days post deployment (random forest: AUC = 0.78, 95% CI = 0.67-0.89, sensitivity = 0.78, specificity = 0.71; SVM: AUC = 0.88, 95% CI = 0.78-0.98, sensitivity = 0.89, specificity = 0.79) and longitudinal PTSD symptom trajectories identified with latent growth mixture modeling (random forest: AUC = 0.85, 95% CI = 0.75-0.96, sensitivity = 0.88, specificity = 0.69; SVM: AUC = 0.87, 95% CI = 0.79-0.96, sensitivity = 0.80, specificity = 0.85). Among the highest-ranked predictive features were pre-deployment sleep quality, anxiety, depression, sustained attention, and cognitive flexibility. Blood-based biomarkers including metabolites, epigenomic, immune, inflammatory, and liver function markers complemented the most important predictors. The clinical prediction of post-deployment symptom trajectories and provisional PTSD diagnosis based on pre-deployment data achieved high discriminatory power. The predictive models may be used to determine deployment readiness and to determine novel pre-deployment interventions to mitigate the risk for deployment-related PTSD.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Afghanistan , Cohort Studies , Humans , Machine Learning , Prospective Studies , Risk Factors , Sleep Quality
13.
Handb Exp Pharmacol ; 258: 167-202, 2020.
Article in English | MEDLINE | ID: mdl-31889218

ABSTRACT

This chapter describes recent clinical trials for opioid use disorder (OUD), an area that has rapidly accelerated in response to the opioid overdose crisis in the USA and newly appropriated funding. Trials involve a wide range of compounds including cannabinoids and psychedelics, new and existing compounds targeting domains emerging from addiction neuroscience, agents repurposed from other indications, and novel strategies including vaccines, enzymes, and other biologicals. In parallel, new formulations of existing compounds offer immediate promise, as do a variety of web-based interventions and smartphone-delivered apps. Trials focused on implementing existing effective interventions in mainstream healthcare settings, and others focused on special populations, e.g., adolescents, criminal justice, pregnant women, native Americans, etc., have the potential to vastly expand treatment in the near term. Given the range of ongoing and recent trials, this chapter is not intended to be an exhaustive review but rather to present an overview of approaches within the framework of the opioid treatment cascade and the context of current OUD pharmacotherapies.


Subject(s)
Behavior, Addictive , Opioid-Related Disorders/drug therapy , Clinical Trials as Topic , Drug Overdose , Humans
14.
Schizophr Bull ; 46(3): 680-689, 2020 04 10.
Article in English | MEDLINE | ID: mdl-31433843

ABSTRACT

BACKGROUND: Converging evidence implicates the anterior hippocampus in the proximal pathophysiology of schizophrenia. Although resting state functional connectivity (FC) holds promise for characterizing anterior hippocampal circuit abnormalities and their relationship to treatment response, this technique has not yet been used in first-episode psychosis (FEP) patients in a manner that distinguishes the anterior from posterior hippocampus. METHODS: We used masked-hippocampal-group-independent component analysis with dual regression to contrast subregional hippocampal-whole brain FC between healthy controls (HCs) and antipsychotic naïve FEP patients (N = 61, 36 female). In a subsample of FEP patients (N = 27, 15 female), we repeated this analysis following 8 weeks of second-generation antipsychotic treatment and explored whether baseline FC predicted treatment response using random forest. RESULTS: Relative to HC, untreated FEP subjects displayed reproducibly lower FC between the left anteromedial hippocampus and cortical regions including the anterior cingulate and insular cortex (P < .05, corrected). Anteromedial hippocampal FC increased in FEP patients following treatment (P < .005), and no longer differed from HC. Random forest analysis showed baseline anteromedial hippocampal FC with four brain regions, namely the insular-opercular cortex, superior frontal gyrus, precentral gyrus, and postcentral gyrus predicted treatment response (area under the curve = 0.95). CONCLUSIONS: Antipsychotic naïve FEP is associated with lower FC between the anterior hippocampus and cortical regions previously implicated in schizophrenia. Preliminary analysis suggests that random forest models based on hippocampal FC may predict treatment response in FEP patients, and hence could be a useful biomarker for treatment development.


Subject(s)
Antipsychotic Agents/pharmacology , Cerebral Cortex/physiopathology , Connectome , Hippocampus/physiopathology , Psychotic Disorders/drug therapy , Psychotic Disorders/physiopathology , Adult , Antipsychotic Agents/administration & dosage , Cerebral Cortex/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Outcome Assessment, Health Care , Psychotic Disorders/diagnostic imaging , Young Adult
15.
Psychopharmacology (Berl) ; 234(21): 3259-3269, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28812124

ABSTRACT

RATIONALE: We recently introduced a new rat model of emotional hyperthermia in which a salient stimulus activates brown adipose tissue (BAT) thermogenesis and tail artery constriction. Antipsychotic drugs, both classical and second generation, act to reduce excessive assignment of salience to objects and events in the external environment. The close association between salient occurrences and increases in body temperature suggests that antipsychotic drugs may also reduce emotional hyperthermia. OBJECTIVES: We determined whether chlorpromazine, clozapine, and risperidone dose dependently reduce emotionally elicited increases in BAT thermogenesis, cutaneous vasoconstriction, and body temperature in rats. METHODS: Rats, chronically instrumented for measurement of BAT and body temperature and tail artery blood flow, singly housed, were confronted with an intruder rat (confined within a small wire-mesh cage) after systemic pre-treatment of the resident rat with vehicle or antipsychotic agent. BAT and body temperatures, tail blood flow, and behavioral activity were continuously measured. RESULTS: Clozapine (30 µg-2 mg/kg), chlorpromazine (0.1-5 mg/kg), and risperidone (6.25 µg-1 mg/kg) robustly and dose-relatedly reduced intruder-elicited BAT thermogenesis and tail artery vasoconstriction, with consequent dose-related reduction in emotional hyperthermia. CONCLUSIONS: Chlorpromazine, a first-generation antipsychotic, as well as clozapine and risperidone, second-generation agents, dose-dependently reduce emotional hyperthermia. Dopamine D2 receptor antagonist properties of chlorpromazine do not contribute to thermoregulatory effects. Interactions with monoamine receptors are important, and these monoamine receptor interactions may also contribute to the therapeutic effects of all three antipsychotics. Thermoregulatory actions of putative antipsychotic agents may constitute a biological marker of their therapeutic properties.


Subject(s)
Chlorpromazine/pharmacology , Clozapine/pharmacology , Emotions/drug effects , Fever/psychology , Risperidone/pharmacology , Thermogenesis/drug effects , Animals , Arousal/drug effects , Dose-Response Relationship, Drug , Fever/prevention & control , Male , Rats , Rats, Sprague-Dawley , Vasoconstriction/drug effects
16.
Psychoneuroendocrinology ; 82: 91-97, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28521179

ABSTRACT

Posttraumatic stress disorder (PTSD) is associated with increased risk for Type 2 diabetes and cardiovascular disease (cardiometabolic disease), warranting research into targeted prevention strategies. In the present case-control study of 160 young (mean age 32.7 years) male military veterans, we aimed to assess whether PTSD status predicted increased markers of cardiometabolic risk in otherwise healthy individuals, and further, to explore biological pathways between PTSD and these increased markers of cardiometabolic risk. Toward these aims, we compared measures of cardiometabolic risk, namely insulin resistance (IR) (HOMA-IR), metabolic syndrome (MetS) and prediabetes, between 80 PTSD cases and 80 controls without PTSD. We then determined whether PTSD-associated increases in HOMA-IR were correlated with select biological variables from pathways previously hypothesized to link PTSD with cardiometabolic risk, including systemic inflammation (increased C-reactive protein, interleukin-6, and tumor necrosis factor α), sympathetic over-activity (increased resting heart rate), and neuroendocrine dysregulation (increased plasma cortisol or serum brain-derived neurotrophic factor (BDNF)). We found PTSD diagnosis was associated with substantially higher HOMA-IR (cases 4.3±4.3 vs controls 2.4±2.0; p<0.001), and a higher frequency of MetS (cases 21.3% vs controls 2.5%; p<0.001), but not prediabetes (cases 20.0% vs controls 18.8%; p>0.05). Cases also had increased pro-inflammatory cytokines (p<0.01), heart rate (p<0.001), and BDNF (p<0.001), which together predicted increased HOMA-IR (adjusted R2=0.68, p<0.001). Results show PTSD diagnosis in young male military veterans without cardiometabolic disease is associated with increased IR, predicted by biological alterations previously hypothesized to link PTSD to increased cardiometabolic risk. Findings support further research into early, targeted prevention of cardiometabolic disease in individuals with PTSD.


Subject(s)
Biomarkers/analysis , Insulin Resistance/physiology , Stress Disorders, Post-Traumatic/complications , Adult , Biomarkers/blood , Body Mass Index , Body Weights and Measures , Brain-Derived Neurotrophic Factor/analysis , Brain-Derived Neurotrophic Factor/blood , C-Reactive Protein/analysis , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Case-Control Studies , Humans , Hydrocortisone/analysis , Hydrocortisone/blood , Interleukin-6/analysis , Interleukin-6/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/diagnosis , Predictive Value of Tests , Risk Factors , Stress Disorders, Post-Traumatic/blood , Veterans
17.
Depress Anxiety ; 34(3): 207-216, 2017 03.
Article in English | MEDLINE | ID: mdl-28245077

ABSTRACT

Posttraumatic stress disorder (PTSD) is common in the general population, yet there are limitations to the effectiveness, tolerability, and acceptability of available first-line interventions. We review the extant knowledge on the effects of marijuana and other cannabinoids on PTSD. Potential therapeutic effects of these agents may largely derive from actions on the endocannabinoid system and we review major animal and human findings in this area. Preclinical and clinical studies generally support the biological plausibility for cannabinoids' potential therapeutic effects, but underscore heterogeneity in outcomes depending on dose, chemotype, and individual variation. Treatment outcome studies of whole plant marijuana and related cannabinoids on PTSD are limited and not methodologically rigorous, precluding conclusions about their potential therapeutic effects. Reported benefits for nightmares and sleep (particularly with synthetic cannabinoid nabilone) substantiate larger controlled trials to determine effectiveness and tolerability. Of concern, marijuana use has been linked to adverse psychiatric outcomes, including conditions commonly comorbid with PTSD such as depression, anxiety, psychosis, and substance misuse. Available evidence is stronger for marijuana's harmful effects on the development of psychosis and substance misuse than for the development of depression and anxiety. Marijuana use is also associated with worse treatment outcomes in naturalistic studies, and with maladaptive coping styles that may maintain PTSD symptoms. Known risks of marijuana thus currently outweigh unknown benefits for PTSD. Although controlled research on marijuana and other cannabinoids' effects on PTSD remains limited, rapid shifts in the legal landscape may now enable such studies, potentially opening new avenues in PTSD treatment research.


Subject(s)
Cannabinoids/therapeutic use , Medical Marijuana/therapeutic use , Outcome Assessment, Health Care , Stress Disorders, Post-Traumatic/drug therapy , Animals , Humans
18.
Hum Brain Mapp ; 37(10): 3544-56, 2016 10.
Article in English | MEDLINE | ID: mdl-27168407

ABSTRACT

Independent component analysis (ICA) is a widely used technique for investigating functional connectivity (fc) in functional magnetic resonance imaging data. Masked independent component analysis (mICA), that is, ICA restricted to a defined region of interest, has been shown to detect local fc networks in particular brain regions, including the cerebellum, brainstem, posterior cingulate cortex, operculo-insular cortex, hippocampus, and spinal cord. Here, we present the mICA toolbox, an open-source GUI toolbox based on FSL command line tools that performs mICA and related analyses in an integrated way. Functions include automated mask generation from atlases, essential preprocessing, mICA-based parcellation, back-reconstruction of whole-brain fc networks from local ones, and reproducibility analysis. Automated slice-wise calculation and cropping are additional functions that reduce computational time and memory requirements for large analyses. To validate our toolbox, we tested these different functions on the cerebellum, hippocampus, and brainstem, using resting-state and task-based data from the Human Connectome Project. In the cerebellum, mICA detected six local networks together with their whole-brain counterparts, closely replicating previous results. MICA-based parcellation of the hippocampus showed a longitudinally discrete configuration with greater heterogeneity in the anterior hippocampus, consistent with animal and human literature. Finally, brainstem mICA detected motor and sensory nuclei involved in the motor task of tongue movement, thereby replicating and extending earlier results. Hum Brain Mapp 37:3544-3556, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging , User-Computer Interface , Adult , Atlases as Topic , Connectome/methods , Female , Humans , Male , Motor Activity/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Reproducibility of Results , Rest , Tongue/physiology
19.
Hum Brain Mapp ; 37(2): 462-76, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26538342

ABSTRACT

The hippocampus (HPC) is functionally heterogeneous along the longitudinal anterior-posterior axis. In rodent models, gene expression maps define at least three discrete longitudinal subregions, which also differ in function, and in anatomical connectivity with the rest of the brain. In humans, equivalent HPC subregions are less well defined, resulting in a lack of consensus in neuroimaging approaches that limits translational study. This study determined whether a data-driven analysis, namely independent component analysis (ICA), could reproducibly define human HPC subregions, and map their respective intrinsic functional connectivity (iFC) with the rest of the brain. Specifically, we performed ICA of resting-state fMRI activity spatially restricted within the HPC, to determine the configuration and reproducibility of functional HPC components. Using dual regression, we then performed multivariate analysis of iFC between resulting HPC components and the whole brain, including detailed connectivity with the hypothalamus, a functionally important connection not yet characterized in human. We found hippocampal ICA resulted in highly reproducible longitudinally discrete components, with greater functional heterogeneity in the anterior HPC, consistent with animal models. Anterior hippocampal components shared iFC with the amygdala, nucleus accumbens, medial prefrontal cortex, posterior cingulate cortex, midline thalamus, and periventricular hypothalamus, whereas posterior hippocampal components shared iFC with the anterior cingulate cortex, retrosplenial cortex, and mammillary bodies. We show that spatially masked hippocampal ICA with dual regression reproducibly identifies functional subregions in the human HPC, and maps their respective brain intrinsic connectivity. Hum Brain Mapp 37:462-476, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiology , Hippocampus/physiology , Magnetic Resonance Imaging/methods , Adult , Data Interpretation, Statistical , Female , Humans , Hypothalamus/physiology , Male , Middle Aged , Multivariate Analysis , Neural Pathways/physiology , Regression Analysis , Rest , Young Adult
20.
Neurotherapeutics ; 12(4): 825-36, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26341731

ABSTRACT

Cannabidiol (CBD), a Cannabis sativa constituent, is a pharmacologically broad-spectrum drug that in recent years has drawn increasing interest as a treatment for a range of neuropsychiatric disorders. The purpose of the current review is to determine CBD's potential as a treatment for anxiety-related disorders, by assessing evidence from preclinical, human experimental, clinical, and epidemiological studies. We found that existing preclinical evidence strongly supports CBD as a treatment for generalized anxiety disorder, panic disorder, social anxiety disorder, obsessive-compulsive disorder, and post-traumatic stress disorder when administered acutely; however, few studies have investigated chronic CBD dosing. Likewise, evidence from human studies supports an anxiolytic role of CBD, but is currently limited to acute dosing, also with few studies in clinical populations. Overall, current evidence indicates CBD has considerable potential as a treatment for multiple anxiety disorders, with need for further study of chronic and therapeutic effects in relevant clinical populations.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anxiety Disorders/drug therapy , Cannabidiol/therapeutic use , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...