Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542467

ABSTRACT

(S)-Atenolol ((S)-2-(4-(2-Hydroxy-3-(isopropylamino)propoxy)phenyl)acetamide) has been synthesized in >99% enantiomeric excess (ee) with the use of Candida antarctica lipase B from Syncozymes (Shanghai, China), in a kinetic resolution of the corresponding racemic chlorohydrin. A catalytic amount of base was used in deprotonation of the phenol building block. The enantiopurity of the chlorohydrin building block remained unchanged upon subsequent amination to yield the final drug. All four steps in the synthesis protocol have been optimized compared to previously reported methods, which makes this new protocol more sustainable and in accordance with green chemistry principles. The overall yield of (S)-atenolol was 9.9%, which will be further optimized.


Subject(s)
Atenolol , Chlorohydrins , China , Lipase/metabolism , Fungal Proteins/metabolism , Catalysis , Stereoisomerism , Kinetics
2.
Front Microbiol ; 14: 1260120, 2023.
Article in English | MEDLINE | ID: mdl-37822747

ABSTRACT

The past few decades have been plagued by an increasing number of infections caused by antibiotic resistant bacteria. To mitigate the rise in untreatable infections, we need new antibiotics with novel targets and drug combinations that reduce resistance development. The novel ß-clamp targeting antimicrobial peptide BTP-001 was recently shown to have a strong additive effect in combination with the halogenated pyrrolopyrimidine JK-274. In this study, the molecular basis for this effect was examined by a comprehensive proteomic and metabolomic study of the individual and combined effects on Staphylococcus aureus. We found that JK-274 reduced activation of several TCA cycle enzymes, likely via increasing the cellular nitric oxide stress, and BTP-001 induced oxidative stress in addition to inhibiting replication, translation, and DNA repair processes. Analysis indicated that several proteins linked to stress were only activated in the combination and not in the single treatments. These results suggest that the strong additive effect is due to the activation of multiple stress responses that can only be triggered by the combined effect of the individual mechanisms. Importantly, the combination dose required to eradicate S. aureus was well tolerated and did not affect cell viability of immortalized human keratinocyte cells, suggesting a species-specific response. Our findings demonstrate the potential of JK-274 and BTP-001 as antibiotic drug candidates and warrant further studies.

3.
Polymers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447546

ABSTRACT

The characterization and quantification of functional groups in technical lignins are among the chief obstacles of the utilization of this highly abundant biopolymer. Although several techniques were developed for this purpose, there is still a need for quick, cost-efficient, and reliable quantification methods for lignin. In this paper, three sampling techniques for fourier transform infrared (FTIR) spectroscopy were assessed both qualitatively and quantitatively, delineating how these affected the resultant spectra. The attenuated total reflectance (ATR) of neat powders and DMSO-d6 solutions, as well as transmission FTIR using the KBr pelleting method (0.5 wt%), were investigated and compared for eight lignin samples. The ATR of neat lignins provided a quick and easy method, but the signal-to-noise ratios in the afforded spectra were limited. The ATR of the DMSO-d6 solutions was highly concentration dependent, but at a 30 wt%, acceptable signal-to-noise ratios were obtained, allowing for the lignins to be studied in the dissolved state. The KBr pelleting method gave a significant improvement in the smoothness and resolution of the resultant spectra compared to the ATR techniques. Subsequently, the content of phenolic OH groups was calculated from each FTIR mode, and the best correlation was seen between the transmission mode using KBr pellets and the ATR of the neat samples (R2 = 0.9995). Using the titration measurements, the total OH and the phenolic OH group content of the lignin samples were determined as well. These results were then compared to the FTIR results, which revealed an under-estimation of the phenolic OH groups from the non-aqueous potentiometric titration, which was likely due to the differences in the pKa between the lignin and the calibration standard 4-hydroxybenzoic acid. Further, a clear correlation was found between the lower Mn and the increased phenolic OH group content via SEC analyses. The work outlined in this paper give complementary views on the characterization and quantification of technical lignin samples via FTIR.

4.
RSC Adv ; 13(18): 12529-12553, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37101953

ABSTRACT

Lignin is the most abundant polyaromatic biopolymer. Due to its rich and versatile chemistry, many applications have been proposed, which include the formulation of functional coatings and films. In addition to replacing fossil-based polymers, the lignin biopolymer can be part of new material solutions. Functionalities may be added, such as UV-blocking, oxygen scavenging, antimicrobial, and barrier properties, which draw on lignin's intrinsic and unique features. As a result, various applications have been proposed, including polymer coatings, adsorbents, paper-sizing additives, wood veneers, food packaging, biomaterials, fertilizers, corrosion inhibitors, and antifouling membranes. Today, technical lignin is produced in large volumes in the pulp and paper industry, whereas even more diverse products are prospected to be available from future biorefineries. Developing new applications for lignin is hence paramount - both from a technological and economic point of view. This review article is therefore summarizing and discussing the current research-state of functional surfaces, films, and coatings with lignin, where emphasis is put on the formulation and application of such solutions.

5.
Antibiotics (Basel) ; 11(8)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892374

ABSTRACT

Currently, there is a world-wide rise in antibiotic resistance causing burdens to individuals and public healthcare systems. At the same time drug development is lagging behind. Therefore, finding new ways of treating bacterial infections either by identifying new agents or combinations of drugs is of utmost importance. Additionally, if combination therapy is based on agents with different modes of action, resistance is less likely to develop. The synthesis of 21 fused pyrimidines and a structure-activity relationship study identified two 6-aryl-7H-pyrrolo [2,3-d] pyrimidin-4-amines with potent activity towards Staphylococcus aureus. The MIC-value was found to be highly dependent on a bromo or iodo substitution in the 4-benzylamine group and a hydroxyl in the meta or para position of the 6-aryl unit. The most active bromo and iodo derivatives had MIC of 8 mg/L. Interestingly, the most potent compounds experienced a four-fold lower MIC-value when they were combined with the antimicrobial peptide betatide giving MIC of 1-2 mg/L. The front runner bromo derivative also has a low activity towards 50 human kinases, including thymidylate monophosphate kinase, a putative antibacterial target.

SELECTION OF CITATIONS
SEARCH DETAIL
...