Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
EBioMedicine ; 104: 105153, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38805853

ABSTRACT

BACKGROUND: The development of a universal influenza virus vaccine, to protect against both seasonal and pandemic influenza A viruses, is a long-standing public health goal. The conserved stalk domain of haemagglutinin (HA) is a promising vaccine target. However, the stalk is immunosubdominant. As such, innovative approaches are required to elicit robust immunity against this domain. In a previously reported observer-blind, randomised placebo-controlled phase I trial (NCT03300050), immunisation regimens using chimeric HA (cHA)-based immunogens formulated as inactivated influenza vaccines (IIV) -/+ AS03 adjuvant, or live attenuated influenza vaccines (LAIV), elicited durable HA stalk-specific antibodies with broad reactivity. In this study, we sought to determine if these vaccines could also boost T cell responses against HA stalk, and nucleoprotein (NP). METHODS: We measured interferon-γ (IFN-γ) responses by Enzyme-Linked ImmunoSpot (ELISpot) assay at baseline, seven days post-prime, pre-boost and seven days post-boost following heterologous prime:boost regimens of LAIV and/or adjuvanted/unadjuvanted IIV-cHA vaccines. FINDINGS: Our findings demonstrate that immunisation with adjuvanted cHA-based IIVs boost HA stalk-specific and NP-specific T cell responses in humans. To date, it has been unclear if HA stalk-specific T cells can be boosted in humans by HA-stalk focused universal vaccines. Therefore, our study will provide valuable insights for the design of future studies to determine the precise role of HA stalk-specific T cells in broad protection. INTERPRETATION: Considering that cHA-based vaccines also elicit stalk-specific antibodies, these data support the further clinical advancement of cHA-based universal influenza vaccine candidates. FUNDING: This study was funded in part by the Bill and Melinda Gates Foundation (BMGF).

3.
Mol Ther ; 30(5): 2024-2047, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34999208

ABSTRACT

Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Adenoviridae/genetics , Animals , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/prevention & control , Mice , Mice, Inbred BALB C
4.
J Thromb Haemost ; 19(11): 2845-2856, 2021 11.
Article in English | MEDLINE | ID: mdl-34351057

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopenia (VITT) has caused global concern. VITT is characterized by thrombosis and thrombocytopenia following COVID-19 vaccinations with the AstraZeneca ChAdOx1 nCov-19 and the Janssen Ad26.COV2.S vaccines. Patients present with thrombosis, severe thrombocytopenia developing 5-24 days following first dose of vaccine, with elevated D-dimer, and PF4 antibodies, signifying platelet activation. As of June 1, 2021, more than 1.93 billion COVID-19 vaccine doses had been administered worldwide. Currently, 467 VITT cases (0.000024%) have been reported across the UK, Europe, Canada, and Australia. Guidance on diagnosis and management of VITT has been reported but the pathogenic mechanism is yet to be fully elucidated. Here, we propose and discuss potential mechanisms in relation to adenovirus induction of VITT. We provide insights and clues into areas warranting investigation into the mechanistic basis of VITT, highlighting the unanswered questions. Further research is required to help solidify a pathogenic model for this condition.


Subject(s)
COVID-19 , Thrombocytopenia , Thrombosis , Vaccines , Ad26COVS1 , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Vaccines/adverse effects
5.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: mdl-33268514

ABSTRACT

The human adenovirus (HAdV) phylogenetic tree is diverse, divided across seven species and comprising over 100 individual types. Species D HAdV are rarely isolated with low rates of preexisting immunity, making them appealing for therapeutic applications. Several species D vectors have been developed as vaccines against infectious diseases, where they induce robust immunity in preclinical models and early phase clinical trials. However, many aspects of the basic virology of species D HAdV, including their basic receptor usage and means of cell entry, remain understudied. Here, we investigated HAdV-D49, which previously has been studied for vaccine and vascular gene transfer applications. We generated a pseudotyped HAdV-C5 presenting the HAdV-D49 fiber knob protein (HAdV-C5/D49K). This pseudotyped vector was efficient at infecting cells devoid of all known HAdV receptors, indicating HAdV-D49 uses an unidentified cellular receptor. Conversely, a pseudotyped vector presenting the fiber knob protein of the closely related HAdV-D30 (HAdV-C5/D30K), differing in four amino acids from HAdV-D49, failed to demonstrate the same tropism. These four amino acid changes resulted in a change in isoelectric point of the knob protein, with HAdV-D49K possessing a basic apical region compared to a more acidic region in HAdV-D30K. Structurally and biologically we demonstrate that HAdV-D49 knob protein is unable to engage CD46, while potential interaction with coxsackievirus and adenovirus receptor (CAR) is extremely limited by extension of the DG loop. HAdV-C5/49K efficiently transduced cancer cell lines of pancreatic, breast, lung, esophageal, and ovarian origin, indicating it may have potential for oncolytic virotherapy applications, especially for difficult to transduce tumor types.IMPORTANCE Adenoviruses are powerful tools experimentally and clinically. To maximize efficacy, the development of serotypes with low preexisting levels of immunity in the population is desirable. Consequently, attention has focused on those derived from species D, which have proven robust vaccine platforms. This widespread usage is despite limited knowledge in their basic biology and cellular tropism. We investigated the tropism of HAdV-D49, demonstrating that it uses a novel cell entry mechanism that bypasses all known HAdV receptors. We demonstrate, biologically, that a pseudotyped HAdV-C5/D49K vector efficiently transduces a wide range of cell lines, including those presenting no known adenovirus receptor. Structural investigation suggests that this broad tropism is the result of a highly basic electrostatic surface potential, since a homologous pseudotyped vector with a more acidic surface potential, HAdV-C5/D30K, does not display a similar pantropism. Therefore, HAdV-C5/D49K may form a powerful vector for therapeutic applications capable of infecting difficult to transduce cells.


Subject(s)
Adenoviruses, Human/physiology , Capsid Proteins/physiology , Genetic Vectors , Receptors, Virus/metabolism , Virus Internalization , Cell Line, Tumor , Humans , Neoplasms/therapy , Oncolytic Virotherapy/methods
6.
Nat Med ; 27(1): 106-114, 2021 01.
Article in English | MEDLINE | ID: mdl-33288923

ABSTRACT

Seasonal influenza viruses constantly change through antigenic drift and the emergence of pandemic influenza viruses through antigenic shift is unpredictable. Conventional influenza virus vaccines induce strain-specific neutralizing antibodies against the variable immunodominant globular head domain of the viral hemagglutinin protein. This necessitates frequent re-formulation of vaccines and handicaps pandemic preparedness. In this completed, observer-blind, randomized, placebo-controlled phase I trial (NCT03300050), safety and immunogenicity of chimeric hemagglutinin-based vaccines were tested in healthy, 18-39-year-old US adults. The study aimed to test the safety and ability of the vaccines to elicit broadly cross-reactive antibodies against the hemagglutinin stalk domain. Participants were enrolled into five groups to receive vaccinations with live-attenuated followed by AS03-adjuvanted inactivated vaccine (n = 20), live-attenuated followed by inactivated vaccine (n = 15), twice AS03-adjuvanted inactivated vaccine (n = 16) or placebo (n = 5, intranasal followed by intramuscular; n = 10, twice intramuscular) 3 months apart. Vaccination was found to be safe and induced a broad, strong, durable and functional immune response targeting the conserved, immunosubdominant stalk of the hemagglutinin. The results suggest that chimeric hemagglutinins have the potential to be developed as universal vaccines that protect broadly against influenza viruses.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Adolescent , Adult , Antibodies, Viral/biosynthesis , Humans , Influenza Vaccines/adverse effects , Placebos , Young Adult
7.
Mol Ther ; 28(7): 1569-1584, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32359470

ABSTRACT

Influenza viruses are respiratory pathogens of public health concern worldwide with up to 650,000 deaths occurring each year. Seasonal influenza virus vaccines are employed to prevent disease, but with limited effectiveness. Development of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is necessary for reducing influenza virus prevalence. In this study, we have utilized lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines to intradermally deliver a combination of conserved influenza virus antigens (hemagglutinin stalk, neuraminidase, matrix-2 ion channel, and nucleoprotein) and induce strong immune responses with substantial breadth and potency in a murine model. The immunity conferred by nucleoside-modified mRNA-lipid nanoparticle vaccines provided protection from challenge with pandemic H1N1 virus at 500 times the median lethal dose after administration of a single immunization, and the combination vaccine protected from morbidity at a dose of 50 ng per antigen. The broad protective potential of a single dose of combination vaccine was confirmed by challenge with a panel of group 1 influenza A viruses. These findings support the advancement of nucleoside-modified mRNA-lipid nanoparticle vaccines expressing multiple conserved antigens as universal influenza virus vaccine candidates.


Subject(s)
Antigens, Viral/genetics , Influenza A Virus, H1N1 Subtype/immunology , Nucleosides/chemistry , Orthomyxoviridae Infections/prevention & control , Vaccines, Synthetic/administration & dosage , Animals , Antibodies, Viral/metabolism , Antigens, Viral/chemistry , Disease Models, Animal , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Injections, Intradermal , Liposomes , Mice , NIH 3T3 Cells , Nanoparticles , Neuraminidase/chemistry , Neuraminidase/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Orthomyxoviridae Infections/immunology , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , mRNA Vaccines
8.
Mol Ther Methods Clin Dev ; 16: 108-125, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-31934599

ABSTRACT

Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5.

9.
Front Immunol ; 11: 607333, 2020.
Article in English | MEDLINE | ID: mdl-33633727

ABSTRACT

It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.


Subject(s)
Adenoviridae/genetics , Genetic Vectors , Influenza Vaccines/therapeutic use , Influenza in Birds/prevention & control , Influenza, Human/prevention & control , Orthomyxoviridae/pathogenicity , Viral Zoonoses , Animals , Birds , Host-Pathogen Interactions , Humans , Immunity, Cellular , Immunity, Humoral , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza in Birds/immunology , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/immunology , Influenza, Human/transmission , Influenza, Human/virology , Orthomyxoviridae/immunology , Vaccination , Vaccines, Synthetic/genetics , Vaccines, Synthetic/metabolism , Vaccines, Synthetic/therapeutic use
10.
Hepatology ; 71(3): 794-807, 2020 03.
Article in English | MEDLINE | ID: mdl-31400152

ABSTRACT

BACKGROUND AND AIMS: The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS: Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS: A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.


Subject(s)
Hepacivirus/immunology , Vaccination , Viral Hepatitis Vaccines/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Epitopes, T-Lymphocyte , Interferon-gamma/blood , Male , Rats , Rats, Sprague-Dawley , Vaccines, Synthetic/immunology , Viral Nonstructural Proteins/immunology
11.
PLoS One ; 13(12): e0208328, 2018.
Article in English | MEDLINE | ID: mdl-30540808

ABSTRACT

BACKGROUND: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified Vaccinia Virus Ankara (MVA) vectored vaccines is a strategy previously shown to provide substantial protective efficacy against P. falciparum infection in United Kingdom adult Phase IIa sporozoite challenge studies (approximately 20-25% sterile protection with similar numbers showing clear delay in time to patency), and greater point efficacy in a trial in Kenyan adults. METHODOLOGY: We conducted the first Phase IIb clinical trial assessing the safety, immunogenicity and efficacy of ChAd63 MVA ME-TRAP in 700 healthy malaria exposed children aged 5-17 months in a highly endemic malaria transmission area of Burkina Faso. RESULTS: ChAd63 MVA ME-TRAP was shown to be safe and immunogenic but induced only moderate T cell responses (median 326 SFU/106 PBMC (95% CI 290-387)) many fold lower than in previous trials. No significant efficacy was observed against clinical malaria during the follow up period, with efficacy against the primary endpoint estimate by proportional analysis being 13.8% (95%CI -42.4 to 47.9) at sixth month post MVA ME-TRAP and 3.1% (95%CI -15.0 to 18.3; p = 0.72) by Cox regression. CONCLUSIONS: This study has confirmed ChAd63 MVA ME-TRAP is a safe and immunogenic vaccine regimen in children and infants with prior exposure to malaria. But no significant protective efficacy was observed in this very highly malaria-endemic setting. TRIAL REGISTRATION: ClinicalTrials.gov NCT01635647. Pactr.org PACTR201208000404131.


Subject(s)
Malaria Vaccines/therapeutic use , Adenoviruses, Simian/genetics , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Kaplan-Meier Estimate , Kenya , Leukocytes, Mononuclear/immunology , Malaria/immunology , Malaria/prevention & control , Male , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , T-Lymphocytes/metabolism , Vaccinia virus/genetics
12.
NPJ Vaccines ; 3: 49, 2018.
Article in English | MEDLINE | ID: mdl-30323956

ABSTRACT

We assessed a combination multi-stage malaria vaccine schedule in which RTS,S/AS01B was given concomitantly with viral vectors expressing multiple-epitope thrombospondin-related adhesion protein (ME-TRAP) in a 0-month, 1-month, and 2-month schedule. RTS,S/AS01B was given as either three full doses or with a fractional (1/5th) third dose. Efficacy was assessed by controlled human malaria infection (CHMI). Safety and immunogenicity of the vaccine regimen was also assessed. Forty-one malaria-naive adults received RTS,S/AS01B at 0, 4 and 8 weeks, either alone (Groups 1 and 2) or with ChAd63 ME-TRAP at week 0, and modified vaccinia Ankara (MVA) ME-TRAP at weeks 4 and 8 (Groups 3 and 4). Groups 2 and 4 received a fractional (1/5th) dose of RTS,S/AS01B at week 8. CHMI was delivered by mosquito bite 11 weeks after first vaccination. Vaccine efficacy was 6/8 (75%), 8/9 (88.9%), 6/10 (60%), and 5/9 (55.6%) of subjects in Groups 1, 2, 3, and 4, respectively. Immunological analysis indicated significant reductions in anti-circumsporozoite protein antibodies and TRAP-specific T cells at CHMI in the combination vaccine groups. This reduced immunogenicity was only observed after concomitant administration of the third dose of RTS,S/AS01B with the second dose of MVA ME-TRAP. The second dose of the MVA vector with a four-week interval caused significantly higher anti-vector immunity than the first and may have been the cause of immunological interference. Co-administration of ChAd63/MVA ME-TRAP with RTS,S/AS01B led to reduced immunogenicity and efficacy, indicating the need for evaluation of alternative schedules or immunization sites in attempts to generate optimal efficacy.

13.
Sci Rep ; 8(1): 3390, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467399

ABSTRACT

Heterologous prime-boost vaccination with viral vectors simian adenovirus 63 (ChAd63) and Modified Vaccinia Ankara (MVA) induces potent T cell and antibody responses in humans. The 8-week regimen demonstrates significant efficacy against malaria when expressing the pre-erythrocytic malaria antigen Thrombospondin-Related Adhesion Protein fused to a multiple epitope string (ME-TRAP). We tested these vaccines in 7 new 4- and 8- week interval schedules to evaluate safety and immunogenicity of multiple ChAd63 ME-TRAP priming vaccinations (denoted A), multiple MVA ME-TRAP boosts (denoted M) and alternating vectors. All regimens exhibited acceptable reactogenicity and CD8+ T cell immunogenicity was enhanced with a 4-week interval (AM) and with incorporation of additional ChAd63 ME-TRAP vaccination at 4- or 8-weeks (AAM or A_A_M). Induction of TRAP antibodies was comparable between schedules. T cell immunity against the ChAd63 hexon did not affect T cell responses to the vaccine insert, however pre-vaccination ChAd63-specific T cells correlated with reduced TRAP antibodies. Vaccine-induced antibodies against MVA did not affect TRAP antibody induction, and correlated positively with ME-TRAP-specific T cells. This study identifies potentially more effective immunisation regimens to assess in Phase IIa trials and demonstrates a degree of flexibility with the timing of vectored vaccine administration, aiding incorporation into existing vaccination programmes.


Subject(s)
Epitopes/immunology , Genetic Vectors/immunology , Liver/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Adenoviruses, Simian/immunology , Adolescent , Adult , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Immunization, Secondary/methods , Male , Middle Aged , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccination/methods , Vaccinia/immunology , Vaccinia virus/immunology , Young Adult
14.
Front Immunol ; 9: 3175, 2018.
Article in English | MEDLINE | ID: mdl-30713538

ABSTRACT

Background: Nearly 3 million people worldwide are coinfected with HIV and HCV. Affordable strategies for prevention are needed. We developed a novel vaccination regimen involving replication-defective and serologically distinct chimpanzee adenovirus (ChAd3, ChAd63) vector priming followed by modified vaccinia Ankara (MVA) boosts, for simultaneous delivery of HCV non-structural (NSmut) and HIV-1 conserved (HIVconsv) region immunogens. Methods: We conducted a phase I trial in which 33 healthy volunteers were sequentially enrolled and vaccinated via the intramuscular route as follows: 9 received ChAd3-NSmut [2.5 × 1010 vp] and MVA-NSmut [2 × 108 pfu] at weeks 0 and 8, respectively; 8 received ChAdV63.HIVconsv [5 × 1010 vp] and MVA.HIVconsv [2 × 108 pfu] at the same interval; 16 were co-primed with ChAd3-NSmut [2.5 × 1010 vp] and ChAdV63.HIVconsv [5 × 1010 vp] followed at week 8 by MVA-NSmut and MVA.HIVconsv [both 1 × 108 pfu]. Immunogenicity was assessed using peptide pools in ex vivo ELISpot and intracellular cytokine assays. Vaccine-induced whole blood transcriptome changes were assessed by microarray analysis. Results: All vaccines were well tolerated and no vaccine-related serious adverse events occurred. Co-administration of the prime-boost vaccine regimens induced high magnitude and broad T cell responses that were similar to those observed following immunization with either regimen alone. Median (interquartile range, IQR) peak responses to NSmut were 3,480 (2,728-4,464) and 3,405 (2,307-7,804) spot-forming cells (SFC)/106 PBMC for single and combined HCV vaccinations, respectively (p = 0.8). Median (IQR) peak responses to HIVconsv were 1,305 (1,095-4,967) and 1,005 (169-2,482) SFC/106 PBMC for single and combined HIV-1 vaccinations, respectively (p = 0.5). Responses were maintained above baseline to 34 weeks post-vaccination. Intracellular cytokine analysis indicated that the responding populations comprised polyfunctional CD4+ and CD8+ T cells. Canonical pathway analysis showed that in the single and combined vaccination groups, pathways associated with antiviral and innate immune responses were enriched for upregulated interferon-stimulated genes 24 h after priming and boosting vaccinations. Conclusions: Serologically distinct adenoviral vectors encoding HCV and HIV-1 immunogens can be safely co-administered without reducing the immunogenicity of either vaccine. This provides a novel strategy for targeting these viruses simultaneously and for other pathogens that affect the same populations. Clinical trial registration: https://clinicaltrials.gov, identifier: NCT02362217.


Subject(s)
Adenoviruses, Simian , Coinfection/prevention & control , Genetic Vectors , HIV Infections/prevention & control , Hepatitis C/prevention & control , Viral Vaccines/immunology , Adenoviruses, Simian/classification , Adenoviruses, Simian/genetics , Adolescent , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , Hepatitis C/genetics , Hepatitis C/immunology , Hepatitis C/virology , Humans , Male , Middle Aged , Neutralization Tests , T-Cell Antigen Receptor Specificity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Young Adult
15.
Front Immunol ; 8: 1551, 2017.
Article in English | MEDLINE | ID: mdl-29213269

ABSTRACT

BACKGROUND: Heterologous prime-boost vaccination with chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) encoding multiple epitope string thrombospondin-related adhesion protein (ME-TRAP) has shown acceptable safety and promising immunogenicity in African adult and pediatric populations. If licensed, this vaccine could be given to infants receiving routine childhood immunizations. We therefore evaluated responses to ChAd63 MVA ME-TRAP when co-administered with routine Expanded Program on Immunization (EPI) vaccines. METHODS: We enrolled 65 Gambian infants and neonates, aged 16, 8, or 1 week at first vaccination and randomized them to receive either ME-TRAP and EPI vaccines or EPI vaccines only. Safety was assessed by the description of vaccine-related adverse events (AEs). Immunogenicity was evaluated using IFNγ enzyme-linked immunospot, whole-blood flow cytometry, and anti-TRAP IgG ELISA. Serology was performed to confirm all infants achieved protective titers to EPI vaccines. RESULTS: The vaccines were well tolerated in all age groups with no vaccine-related serious AEs. High-level TRAP-specific IgG and T cell responses were generated after boosting with MVA. CD8+ T cell responses, previously found to correlate with protection, were induced in all groups. Antibody responses to EPI vaccines were not altered significantly. CONCLUSION: Malaria vectored prime-boost vaccines co-administered with routine childhood immunizations were well tolerated. Potent humoral and cellular immunity induced by ChAd63 MVA ME-TRAP did not reduce the immunogenicity of co-administered EPI vaccines, supporting further evaluation of this regimen in infant populations. CLINICAL TRIAL REGISTRATION: The clinical trial was registered on http://Clinicaltrials.gov (NCT02083887) and the Pan-African Clinical Trials Registry (PACTR201402000749217).

16.
Vaccine ; 35(45): 6208-6217, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28941620

ABSTRACT

The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25µg (n=8) or 50µg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512.


Subject(s)
Immunization, Secondary/adverse effects , Immunogenicity, Vaccine/immunology , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Nanoparticles/adverse effects , Saponins/adverse effects , Saponins/immunology , Vaccination/adverse effects , Adenoviridae/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adolescent , Adult , Antibodies, Protozoan/immunology , Enzyme-Linked Immunospot Assay/methods , Epitopes/adverse effects , Epitopes/immunology , Female , Genetic Vectors/adverse effects , Genetic Vectors/immunology , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Male , Middle Aged , Protozoan Proteins/immunology , T-Lymphocytes/immunology , Vaccinia/immunology , Young Adult
17.
Mol Ther ; 25(2): 547-559, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28153101

ABSTRACT

Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8+ T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8+ and CD4+ T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine.


Subject(s)
Antibodies, Protozoan/immunology , Genetic Vectors , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , T-Lymphocytes/immunology , Africa, Western , Antibodies, Protozoan/blood , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Genetic Vectors/adverse effects , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/immunology , Infant , Infant, Newborn , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , T-Lymphocytes/metabolism , Vaccination
18.
PLoS One ; 11(12): e0167951, 2016.
Article in English | MEDLINE | ID: mdl-27978537

ABSTRACT

Malaria transmission is in decline in some parts of Africa, partly due to the scaling up of control measures. If the goal of elimination is to be achieved, additional control measures including an effective and durable vaccine will be required. Studies utilising the prime-boost approach to deliver viral vectors encoding the pre-erythrocytic antigen ME-TRAP (multiple epitope thrombospondin-related adhesion protein) have shown promising safety, immunogenicity and efficacy in sporozoite challenge studies. More recently, a study in Kenyan adults, similar to that reported here, showed substantial efficacy against P. falciparum infection. One hundred and twenty healthy male volunteers, living in a malaria endemic area of Senegal were randomised to receive either the Chimpanzee adenovirus (ChAd63) ME-TRAP as prime vaccination, followed eight weeks later by modified vaccinia Ankara (MVA) also encoding ME-TRAP as booster, or two doses of anti-rabies vaccine as a comparator. Prior to follow-up, antimalarials were administered to clear parasitaemia and then participants were monitored by PCR for malaria infection for eight weeks. The primary endpoint was time-to-infection with P. falciparum malaria, determined by two consecutive positive PCR results. Secondary endpoints included adverse event reporting, measures of cellular and humoral immunogenicity and a meta-analysis of combined vaccine efficacy with the parallel study in Kenyan adults.We show that this pre-erythrocytic malaria vaccine is safe and induces significant immunogenicity, with a peak T-cell response at seven days after boosting of 932 Spot Forming Cells (SFC)/106 Peripheral Blood Mononuclear Cells(PBMC) compared to 57 SFC/ 106 PBMCs in the control group. However, a vaccine efficacy was not observed: 12 of 57 ME-TRAP vaccinees became PCR positive during the intensive monitoring period as compared to 13 of the 58 controls (P = 0.80). This trial confirms that vaccine efficacy against malaria infection in adults may be rapidly assessed using this efficient and cost-effective clinical trial design. Further efficacy evaluation of this vectored candidate vaccine approach in other malaria transmission settings and age-de-escalation into the main target age groups for a malaria vaccine is in progress.


Subject(s)
Malaria Vaccines/immunology , Malaria Vaccines/therapeutic use , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/pathogenicity , Protozoan Proteins/immunology , Adenoviruses, Simian/genetics , Adult , Antimalarials/therapeutic use , Humans , Malaria Vaccines/adverse effects , Malaria, Falciparum/genetics , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Polymerase Chain Reaction , Protozoan Proteins/genetics , Senegal , Vaccination/adverse effects , Vaccination/methods , Vaccinia virus/genetics
19.
J Infect Dis ; 214(5): 772-81, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27307573

ABSTRACT

BACKGROUND: The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. METHOD: Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. RESULTS: No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. CONCLUSIONS: The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. CLINICAL TRIALS REGISTRATION: NCT01883609.


Subject(s)
Drug Carriers , Immunization Schedule , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Adenoviridae/genetics , Adolescent , Adult , Animals , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Healthy Volunteers , Humans , Malaria Vaccines/administration & dosage , Male , Middle Aged , Protozoan Proteins/administration & dosage , Treatment Outcome , Vaccines, Combined/administration & dosage , Vaccines, Combined/adverse effects , Vaccines, Combined/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Young Adult
20.
Mol Ther ; 24(8): 1470-7, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27109630

ABSTRACT

Malaria remains a significant global health burden and a vaccine would make a substantial contribution to malaria control. Chimpanzee Adenovirus 63 Modified Vaccinia Ankara Multiple epitope thrombospondin adhesion protein (ME-TRAP) and vaccination has shown significant efficacy against malaria sporozoite challenge in malaria-naive European volunteers and against malaria infection in Kenyan adults. Infants are the target age group for malaria vaccination; however, no studies have yet assessed T-cell responses in children and infants. We enrolled 138 Gambian and Burkinabe children in four different age-groups: 2-6 years old in The Gambia; 5-17 months old in Burkina Faso; 5-12 months old, and also 10 weeks old, in The Gambia; and evaluated the safety and immunogenicity of Chimpanzee Adenovirus 63 Modified Vaccinia Ankara ME-TRAP heterologous prime-boost immunization. The vaccines were well tolerated in all age groups with no vaccine-related serious adverse events. T-cell responses to vaccination peaked 7 days after boosting with Modified Vaccinia Ankara, with T-cell responses highest in 10 week-old infants. Heterologous prime-boost immunization with Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara ME-TRAP was well tolerated in infants and children, inducing strong T-cell responses. We identify an approach that induces potent T-cell responses in infants, which may be useful for preventing other infectious diseases requiring cellular immunity.


Subject(s)
Adenoviruses, Simian , Epitopes , Genetic Vectors , Malaria Vaccines/immunology , Malaria/prevention & control , Vaccinia virus , Africa, Western/epidemiology , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Child , Child, Preschool , Enzyme-Linked Immunospot Assay , Epitopes/immunology , Gambia , Genetic Vectors/adverse effects , Humans , Immunization, Secondary , Infant , Infant, Newborn , Malaria/epidemiology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Outcome Assessment, Health Care
SELECTION OF CITATIONS
SEARCH DETAIL
...