Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cartilage ; : 19476035241235633, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501455

ABSTRACT

OBJECTIVE: To investigate whether and how a single traumatic impact changes the mechanical properties of talar articular cartilage. DESIGN: A marble was placed on the joint surface and a weight was dropped on both medial and lateral caprine talus to create a well-defined single focal impact. The mechanical properties of intact and impacted talar cartilage were measured with a micro-indenter. Elastic (storage) and viscous (loss) moduli were determined by oscillatory ramp and dynamic mechanical analysis protocols. RESULTS: We found significant differences between ankles and within the same ankle joint, with the medial talus having significantly higher storage- and loss moduli than the lateral talus. The storage- and loss moduli of intact articular cartilage increased with greater indentation depths. However, postimpact the storage- and loss moduli were significantly and consistently lower in all specimens indicating immediate posttraumatic damage. The deeper regions of talar cartilage were less affected by the impact than the more superficial regions. CONCLUSIONS: A single traumatic impact results in an immediate and significant decrease of storage- and loss moduli. Further research must focus on the development of non- or minimally invasive diagnostic tools to address the exact microdamage caused by the impact. We speculate that the traumatic impact damaged the collagen fibers that confine the water-binding proteoglycans and thereby decreasing the hydrostatic pressure of cartilage. As part of the treatment directly after a trauma, one could imagine a reduction or restriction of peak loads to prevent the progression of the cascade towards PTOA of the ankle joint.

2.
Cartilage ; 13(2_suppl): 1490S-1500S, 2021 12.
Article in English | MEDLINE | ID: mdl-31540553

ABSTRACT

OBJECTIVE: Excessive articular loading, for example, an ankle sprain, may result in focal osteochondral damage, initiating a vicious degenerative process resulting in posttraumatic osteoarthritis (PTOA). Better understanding of this degenerative process would allow improving posttraumatic care with the aim to prevent PTOA. The primary objective of this study was to establish a drop-weight impact testing model with controllable, reproducible and quantitative axial impact loads to induce osteochondral damage in caprine tibiotalar joints. We aimed to induce osteochondral damage on microscale level of the tibiotalar joint without gross intra-articular fractures of the tibial plafond. DESIGN: Fresh-frozen tibiotalar joints of mature goats were used as ex vivo articulating joint models. Specimens were axially impacted by a mass of 10.5 kg dropped from a height of 0.3 m, resulting in a speed of 2.4 m/s, an impact energy of 31.1 J and an impact impulse of 25.6 N·s. Potential osteochondral damage of the caprine tibiotalar joints was assessed using contrast-enhanced high-resolution micro-computed tomography (micro-CT). Subsequently, we performed quasi-static loading experiments to determine postimpact mechanical behavior of the tibiotalar joints. RESULTS: Single axial impact loads with a mass of 15.5 kg dropped from 0.3 m, resulted in intra-articular fractures of the tibial plafond, where a mass of 10.55 kg dropped from 0.3 m did not result in any macroscopic damage. In addition, contrast-enhanced high-resolution micro-CT imaging neither reveal any acute microdamage (i.e., microcracks) of the subchondral bone nor any (micro)structural changes in articular cartilage. The Hexabrix content or voxel density (i.e., proteoglycan content of the articular cartilage) on micro-CT did not show any differences between intact and impacted specimens. However, quasi-static whole-tibiotalar-joint loading showed an altered biomechanical behavior after application of a single axial impact (i.e., increased hysteresis when compared with the intact or nonimpacted specimens). CONCLUSIONS: Single axial impact loads did not induce osteochondral damage visible with high-resolution contrast-enhanced micro-CT. However, despite the lack of damage on macro- and even microscale, the single axial impact loads resulted in "invisible injuries" because of the observed changes in the whole-joint biomechanics of the caprine tibiotalar joints. Future research must focus on diagnostic tools for the detection of early changes in articular cartilage after a traumatic impact (i.e., ankle sprains or ankle fractures), as it is well known that this could result in PTOA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Ankle Joint , Cartilage, Articular/diagnostic imaging , Goats , X-Ray Microtomography
3.
Bone Joint J ; 102-B(9): 1229-1241, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32862684

ABSTRACT

AIMS: The primary aim of this study was to address the hypothesis that fracture morphology might be more important than posterior malleolar fragment size in rotational type posterior malleolar ankle fractures (PMAFs). The secondary aim was to identify clinically important predictors of outcome for each respective PMAF-type, to challenge the current dogma that surgical decision-making should be based on fragment size. METHODS: This observational prospective cohort study included 70 patients with operatively treated rotational type PMAFs, respectively: 23 Haraguchi Type I (large posterolateral-oblique), 22 Type II (two-part posterolateral and posteromedial), and 25 (avulsion-) Type III. There was no standardized protocol on how to address the PMAFs and CT-imaging was used to classify fracture morphology and quality of postoperative syndesmotic reduction. Quantitative 3D-CT (Q3DCT) was used to assess the quality of fracture reduction, respectively: the proportion of articular involvement; residual intra-articular: gap, step-off, and 3D-displacement; and residual gap and step-off at the fibular notch. These predictors were correlated with the Foot and Ankle Outcome Score (FAOS) at two-years follow-up. RESULTS: Bivariate analyses revealed that fracture morphology (p = 0.039) as well as fragment size (p = 0.007) were significantly associated with the FAOS. However, in multivariate analyses, fracture morphology (p = 0.001) (but not fragment size (p = 0.432)) and the residual intra-articular gap(s) (p = 0.009) were significantly associated. Haraguchi Type-II PMAFs had poorer FAOS scores compared with Types I and III. Multivariate analyses identified the following independent predictors: step-off in Type I; none of the Q3DCT-measurements in Type II, and quality of syndesmotic reduction in small-avulsion Type III PMAFs. CONCLUSION: PMAFs are three separate entities based on fracture morphology, with different predictors of outcome for each PMAF type. The current debate on whether or not to fix PMAFs needs to be refined to determine which morphological subtype benefits from fixation. In PMAFs, fracture morphology should guide treatment instead of fragment size. Cite this article: Bone Joint J 2020;102-B(9):1229-1241.


Subject(s)
Ankle Fractures/surgery , Fracture Fixation , Adult , Ankle Fractures/pathology , Female , Humans , Male , Middle Aged , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...