Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38175697

ABSTRACT

Foodborne botulism is a neuroparalytic disease caused by ingestion of foods contaminated with botulinum neurotoxin (BoNT), produced by Clostridium botulinum. In 1995 a husband and wife from Québec, Canada, were hospitalized for several months with prolonged muscle paralysis after ingesting a commercial pâté de campagne. Examination of faecal samples from both patients and the pâté produced viable Group I (proteolytic) C. botulinum type B from each of the three samples. Whole genome sequencing revealed that all three isolates contain identical bont/B5 and bont/F2 genes encoded on a plasmid. Both faecal isolate genomes were identical in chromosome and plasmid length, as well as gene content. The genome of the pâté isolate was nearly identical to that of the faecal isolates with the notable difference of a missing 13-gene insertion on the bont/B5 cluster disrupting the ntnh gene. Examination of the insertion revealed several mobile genetic elements that participate in recombination.


Subject(s)
Botulism , Clostridium botulinum type B , Humans , Botulism/epidemiology , Canada , Disease Outbreaks , Recombination, Genetic
2.
Epidemiol Infect ; 151: e154, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37675600

ABSTRACT

Clostridium botulinum causes infant botulism by colonising the intestines and producing botulinum neurotoxin in situ. Previous reports have linked infant botulism cases to C. botulinum spores in household dust, yet the baseline incidence of C. botulinum spores in residential households is currently unknown. Vacuum cleaner dust from 963 households in 13 major Canadian cities was tested for C. botulinum using a novel real-time PCR assay directed against all known subtypes of the botulinum neurotoxin gene. None of the samples tested positive for C. botulinum. Analysis of a random subset of samples by MALDI Biotyper revealed that the most common anaerobic bacterial isolates were of the genus Clostridium and the most common species recovered overall was Clostridium perfringens. Dust that was spiked with C. botulinum spores of each toxin type successfully produced positive real-time PCR reactions. These control experiments indicate that this is a viable method for the detection of C. botulinum spores in household dust. We make several recommendations for future work that may help discover a common environmental source of C. botulinum spores that could lead to effective preventative measures for this rare but deadly childhood disease.


Subject(s)
Botulinum Toxins , Botulism , Clostridium botulinum , Humans , Infant , Child , Clostridium botulinum/genetics , Botulism/etiology , Botulism/microbiology , Dust/analysis , Cities , Spores, Bacterial/chemistry , Canada/epidemiology , Botulinum Toxins/genetics
3.
Food Microbiol ; 98: 103780, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33875208

ABSTRACT

Human coronaviruses (HCoVs) are mainly associated with respiratory infections. However, there is evidence that highly pathogenic HCoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East Respiratory Syndrome (MERS-CoV), infect the gastrointestinal (GI) tract and are shed in the fecal matter of the infected individuals. These observations have raised questions regarding the possibility of fecal-oral route as well as foodborne transmission of SARS-CoV-2 and MERS-CoV. Studies regarding the survival of HCoVs on inanimate surfaces demonstrate that these viruses can remain infectious for hours to days, however, there is limited data regarding the viral survival on fresh produce, which is usually consumed raw or with minimal heat processing. To address this knowledge gap, we examined the persistence of HCoV-229E, as a surrogate for highly pathogenic HCoVs, on the surface of commonly consumed fresh produce, including: apples, tomatoes, cucumbers and lettuce. Herein, we demonstrated that viral infectivity declines within a few hours post-inoculation (p.i) on apples and tomatoes, and no infectious virus was detected at 24h p.i, while the virus persists in infectious form for 72h p.i on cucumbers and lettuce. The stability of viral RNA was examined by droplet-digital RT-PCR (ddRT-PCR), and it was observed that there is no considerable reduction in viral RNA within 72h p.i.


Subject(s)
Coronavirus 229E, Human/isolation & purification , Food Contamination/analysis , Fruit/virology , Vegetables/virology , Cell Line , Humans , Ontario , RNA, Viral/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...