Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 494
Filter
1.
IJTLD Open ; 1(5): 197-205, 2024 May.
Article in English | MEDLINE | ID: mdl-39022778

ABSTRACT

BACKGROUND: We examined the feasibility of assessing and referring adults successfully completing TB treatment for comorbidities, risk determinants and disability in health facilities in Kenya, Uganda, Zambia and Zimbabwe. METHODS: This was a cross-sectional study within national TB programmes. RESULTS: Health workers assessed 1,063 patients (78% of eligible) in a median of 22 min [IQR 16-35] and found it useful and feasible to accomplish in addition to other responsibilities. For comorbidities, 476 (44%) had HIV co-infection, 172 (16%) had high blood pressure (newly detected in 124), 43 (4%) had mental health disorders (newly detected in 33) and 36 (3%) had diabetes mellitus. The most common risk determinants were 'probable alcohol dependence' (15%) and malnutrition (14%). Disability, defined as walking <400 m in 6 min, was found in 151/882 (17%). Overall, 763 (72%) patients had at least one comorbidity, risk determinant and/or disability. At least two-thirds of eligible patients were referred for care, although 80% of those with disability needed referral outside their original health facility. CONCLUSIONS: Seven in 10 patients completing TB treatment had at least one comorbidity, risk determinant and/or disability. This emphasises the need for offering early patient-centred care, including pulmonary rehabilitation, to improve quality of life, reduce TB recurrence and increase long-term survival.


CONTEXTE: Nous avons examiné la faisabilité d'évaluer et de référer les adultes ayant terminé avec succès le traitement de la TB pour les comorbidités, les déterminants de risque et l'invalidité dans les établissements de santé au Kenya, en Ouganda, en Zambie et au Zimbabwe. MÉTHODES: Il s'agissait d'une étude transversale menée dans le cadre des programmes nationaux de lutte contre la TB. RÉSULTATS: Les agents de santé ont évalué 1 063 patients (78% des personnes éligibles) en médiane de 22 min (IQR 16­35) et ont jugé utile et réalisable d'accomplir cette tâche en plus de leurs autres responsabilités. Pour les comorbidités, 476 (44%) étaient co-infectés par le VIH, 172 (16%) souffraient d'hypertension artérielle (dont 124 nouvellement diagnostiqués), 43 (4%) présentaient des troubles de santé mentale (dont 33 nouvellement diagnostiqués) et 36 (3%) étaient diabétiques. Les déterminants de risque les plus courants étaient une « dépendance probable à l'alcool ¼ (15%) et la malnutrition (14%). L'invalidité, définie comme une marche <400 m en 6 min, a été observée chez 151/882 (17%) des patients. Dans l'ensemble, 763 (72%) des patients présentaient au moins une comorbidité, un déterminant de risque et/ou une invalidité. Au moins deux tiers des patients éligibles ont été référés pour des soins, bien que 80% de ceux souffrant d'invalidité aient besoin d'être référés en dehors de leur établissement de santé d'origine. CONCLUSIONS: Sept patients sur 10 ayant terminé le traitement de la TB présentaient au moins une comorbidité, un déterminant de risque et/ou une invalidité. Cela souligne la nécessité d'offrir des soins précoces centrés sur le patient, y compris une réadaptation pulmonaire, pour améliorer la qualité de vie, réduire la récurrence de la TB et augmenter la survie à long terme.

2.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979309

ABSTRACT

Programmed axon degeneration (AxD) is a key feature of many neurodegenerative diseases. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of AxD, preventing it from initiating the rapid local NAD+ depletion and metabolic catastrophe that precipitates axon destruction. Because these components of the AxD pathway act within neurons, it was also assumed that the timetable of AxD was set strictly by a cell-intrinsic mechanism independent of neuron-extrinsic processes later activated by axon fragmentation. However, using a rare human disease model of neuropathy caused by hypomorphic NMNAT2 mutations and chronic SARM1 activation (sarmopathy), we demonstrated that neuronal SARM1 can initiate macrophage-mediated axon elimination long before stressed-but-viable axons would otherwise succumb to cell-intrinsic metabolic failure. Investigating potential SARM1-dependent signals that mediate macrophage recognition and/or engulfment of stressed-but-viable axons, we found that chronic SARM1 activation triggers axonal blebbing and dysregulation of phosphatidylserine (PS), a potent phagocyte immunomodulatory molecule. Neuronal expression of the phosphatidylserine lipase ABDH12 suppresses nerve macrophage activation, preserves motor axon integrity, and rescues motor function in this chronic sarmopathy model. We conclude that PS dysregulation is an early SARM1-dependent axonal stress signal, and that blockade of phagocytic recognition and engulfment of stressed-but-viable axons could be an attractive therapeutic target for management of neurological disorders involving SARM1 activation.

3.
Glob Chang Biol ; 30(5): e17287, 2024 May.
Article in English | MEDLINE | ID: mdl-38695768

ABSTRACT

While droughts predominantly induce immediate reductions in plant carbon uptake, they can also exert long-lasting effects on carbon fluxes through associated changes in leaf area, soil carbon, etc. Among other mechanisms, shifts in carbon allocation due to water stress can contribute to the legacy effects of drought on carbon fluxes. However, the magnitude and impact of these allocation shifts on carbon fluxes and pools remain poorly understood. Using data from a wet tropical flux tower site in French Guiana, we demonstrate that drought-induced carbon allocation shifts can be reliably inferred by assimilating Net Biosphere Exchange (NBE) and other observations within the CARbon DAta MOdel fraMework. This model-data fusion system allows inference of optimized carbon and water cycle parameters and states from multiple observational data streams. We then examined how these inferred shifts affected the duration and magnitude of drought's impact on NBE during and after the extreme event. Compared to a static allocation scheme analogous to those typically implemented in land surface models, dynamic allocation reduced average carbon uptake during drought recovery by a factor of 2.8. Additionally, the dynamic model extended the average recovery time by 5 months. The inferred allocation shifts influenced the post-drought period by altering foliage and fine root pools, which in turn modulated gross primary productivity and heterotrophic respiration for up to a decade. These changes can create a bust-boom cycle where carbon uptake is enhanced some years after a drought, compared to what would have occurred under drought-free conditions. Overall, allocation shifts accounted for 65% [45%-75%] of drought legacy effects in modeled NBE. In summary, drought-induced carbon allocation shifts can play a substantial role in the enduring influence of drought on cumulative land-atmosphere CO2 exchanges and should be accounted for in ecosystem models.


Subject(s)
Carbon Cycle , Droughts , Tropical Climate , French Guiana , Forests , Carbon/metabolism , Models, Theoretical
4.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562780

ABSTRACT

Pathological TDP-43 loss from the nucleus and cytoplasmic aggregation occurs in almost all cases of ALS and half of frontotemporal dementia patients. Stathmin2 (Stmn2) is a key target of TDP-43 regulation and aberrantly spliced Stmn2 mRNA is found in patients with ALS, frontotemporal dementia, and Alzheimer's Disease. STMN2 participates in the axon injury response and its depletion in vivo partially replicates ALS-like symptoms including progressive motor deficits and distal NMJ denervation. The interaction between STMN2 loss and TDP-43 dysfunction has not been studied in mice because TDP-43 regulates human but not murine Stmn2 splicing. Therefore, we generated trans-heterozygous mice that lack one functional copy of Stmn2 and express one mutant TDP-43Q331K knock-in allele to investigate whether reduced STMN2 function exacerbates TDP-43-dependent pathology. Indeed, we observe synergy between these two alleles, resulting in an early onset, progressive motor deficit. Surprisingly, this behavioral defect is not accompanied by detectable neuropathology in the brain, spinal cord, peripheral nerves or at neuromuscular junctions (NMJs). However, the trans-heterozygous mice exhibit abnormal mitochondrial morphology in their distal axons and NMJs. As both STMN2 and TDP-43 affect mitochondrial dynamics, and neuronal mitochondrial dysfunction is a cardinal feature of many neurodegenerative diseases, this abnormality likely contributes to the observed motor deficit. These findings demonstrate that partial loss of STMN2 significantly exacerbates TDP-43-associated phenotypes, suggesting that STMN2 restoration could ameliorate TDP-43 related disease before the onset of degeneration.

5.
Environ Sci Technol ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38325813

ABSTRACT

Tropical wetlands contribute ∼30% of the global methane (CH4) budget. Limited observational constraints on tropical wetland CH4 emissions lead to large uncertainties and disparities in representing emissions. In this work, we combine remote sensing observations with atmospheric and wetland models to investigate dry season wetland CH4 emissions from the Pantanal region of South America. We incorporate inundation maps generated from the Cyclone Global Navigation Satellite System (CYGNSS) satellite constellation together with traditional inundation maps to generate an ensemble of wetland CH4 emission realizations. We challenge these realizations with daily satellite observations for May-July when wetland CH4 emission predictions diverge. We find that the CYGNSS inundation products predict larger emissions in May, in better agreement with observations. We use the model ensemble to generate an empirical observational constraint on CH4 emissions independent of choice of inundation map, finding large dry season wetland CH4 emissions (31.7 ± 13.6 and 32.0 ± 20.2 mg CH4/m2/day in May and June/July during 2018/2019, respectively). These May/June/July emissions are 2-3 times higher than current models, suggesting that annual wetland emissions may be higher than traditionally simulated. Observed trends in the early dry season indicate that dynamics during this period are of importance in representing tropical wetland CH4 behaviors.

6.
Glob Chang Biol ; 29(19): 5652-5665, 2023 10.
Article in English | MEDLINE | ID: mdl-37497614

ABSTRACT

More frequent and severe droughts are driving increased forest mortality around the globe. We urgently need to describe and predict how drought affects forest carbon cycling and identify thresholds of environmental stress that trigger ecosystem collapse. Quantifying the effects of drought at an ecosystem level is complex because dynamic climate-plant relationships can cause rapid and/or prolonged shifts in carbon balance. We employ the CARbon DAta MOdel fraMework (CARDAMOM) to investigate legacy effects of drought on forest carbon pools and fluxes. Our Bayesian model-data fusion approach uses tower observed meteorological forcing and carbon fluxes to determine the response and sensitivity of aboveground and belowground ecological processes associated with the 2012-2015 California drought. Our study area is a mid-montane mixed conifer forest in the Southern Sierras. CARDAMOM constrained with gross primary productivity (GPP) estimates covering 2011-2017 show a ~75% reduction in GPP, compared to negligible GPP change when constrained with 2011 only. Precipitation across 2012-2015 was 45% (474 mm) lower than the historical average and drove a cascading depletion in soil moisture and carbon pools (foliar, labile, roots, and litter). Adding 157 mm during an especially stressful year (2014, annual rainfall = 293 mm) led to a smaller depletion of water and carbon pools, steering the ecosystem away from a state of GPP tipping-point collapse to recovery. We present novel process-driven insights that demonstrate the sensitivity of GPP collapse to ecosystem foliar carbon and soil moisture states-showing that the full extent of GPP response takes several years to arise. Thus, long-term changes in soil moisture and carbon pools can provide a mechanistic link between drought and forest mortality. Our study provides an example for how key precipitation threshold ranges can influence forest productivity, making them useful for monitoring and predicting forest mortality events.


Subject(s)
Droughts , Ecosystem , Bayes Theorem , Forests , Soil , Carbon
7.
Glob Chang Biol ; 29(8): 2256-2273, 2023 04.
Article in English | MEDLINE | ID: mdl-36560840

ABSTRACT

Accurate estimation and forecasts of net biome CO2 exchange (NBE) are vital for understanding the role of terrestrial ecosystems in a changing climate. Prior efforts to improve NBE predictions have predominantly focused on increasing models' structural realism (and thus complexity), but parametric error and uncertainty are also key determinants of model skill. Here, we investigate how different parameterization assumptions propagate into NBE prediction errors across the globe, pitting the traditional plant functional type (PFT)-based approach against a novel top-down, machine learning-based "environmental filtering" (EF) approach. To do so, we simulate these contrasting methods for parameter assignment within a flexible model-data fusion framework of the terrestrial carbon cycle (CARDAMOM) at a global scale. In the PFT-based approach, model parameters from a small number of select locations are applied uniformly within regions sharing similar land cover characteristics. In the EF-based approach, a pixel's parameters are predicted based on underlying relationships with climate, soil, and canopy properties. To isolate the role of parametric from structural uncertainty in our analysis, we benchmark the resulting PFT-based and EF-based NBE predictions with estimates from CARDAMOM's Bayesian optimization approach (whereby "true" parameters consistent with a suite of data constraints are retrieved on a pixel-by-pixel basis). When considering the mean absolute error of NBE predictions across time, we find that the EF-based approach matches or outperforms the PFT-based approach at 55% of pixels-a narrow majority. However, NBE estimates from the EF-based approach are susceptible to compensation between errors in component flux predictions and predicted parameters can align poorly with the assumed "true" values. Overall, though, the EF-based approach is comparable to conventional approaches and merits further investigation to better understand and resolve these limitations. This work provides insight into the relationship between terrestrial biosphere model performance and parametric uncertainty, informing efforts to improve model parameterization via PFT-free and trait-based approaches.


Subject(s)
Carbon Dioxide , Ecosystem , Bayes Theorem , Climate , Carbon Cycle
8.
J Clin Invest ; 132(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36287209

ABSTRACT

Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified 2 rare NMNAT2 missense variants in 2 brothers afflicted with a progressive neuropathy syndrome. The polymorphisms resulted in amino acid substitutions V98M and R232Q, which reduced NMNAT2 NAD+-synthetase activity. We generated a mouse model to mirror the human syndrome and found that Nmnat2V98M/R232Q compound-heterozygous CRISPR mice survived to adulthood but developed progressive motor dysfunction, peripheral axon loss, and macrophage infiltration. These disease phenotypes were all SARM1-dependent. Remarkably, macrophage depletion therapy blocked and reversed neuropathic phenotypes in Nmnat2V98M/R232Q mice, identifying a SARM1-dependent neuroimmune mechanism as a key driver of disease pathogenesis. These findings demonstrate that SARM1 induced inflammatory neuropathy and highlight the potential of immune therapy as a treatment for this rare syndrome and other neurodegenerative conditions associated with NMNAT2 loss and SARM1 activation.


Subject(s)
Nicotinamide-Nucleotide Adenylyltransferase , Peripheral Nervous System Diseases , Male , Animals , Mice , Humans , Adult , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nerve Degeneration/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Axons/metabolism , Peripheral Nervous System Diseases/metabolism , Macrophages/metabolism
9.
Sci Data ; 9(1): 258, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650204

ABSTRACT

Land and Earth system modeling is moving towards more explicit biophysical representations, requiring increasing variety of datasets for initialization and benchmarking. However, researchers often have difficulties in identifying and integrating non-standardized datasets from various sources. We aim towards a standardized database and one-stop distribution method of global datasets. Here, we present the GriddingMachine as (1) a database of global-scale datasets commonly used to parameterize or benchmark the models, from plant traits to vegetation indices and geophysical information and (2) a cross-platform open source software to download and request a subset of datasets with only a few lines of code. The GriddingMachine datasets can be accessed either manually through traditional HTTP, or automatically using modern programming languages including Julia, Matlab, Octave, Python, and R. The GriddingMachine collections can be used for any land and Earth modeling framework and ecological research at the regional and global scales, and the number of datasets will continue to grow to meet the increasing needs of research communities.

10.
Cell Rep ; 39(13): 111001, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767949

ABSTRACT

TDP-43 mediates proper Stathmin-2 (STMN2) mRNA splicing, and STMN2 protein is reduced in the spinal cord of most patients with amyotrophic lateral sclerosis (ALS). To test the hypothesis that STMN2 loss contributes to ALS pathogenesis, we generated constitutive and conditional STMN2 knockout mice. Constitutive STMN2 loss results in early-onset sensory and motor neuropathy featuring impaired motor behavior and dramatic distal neuromuscular junction (NMJ) denervation of fast-fatigable motor units, which are selectively vulnerable in ALS, without axon or motoneuron degeneration. Selective excision of STMN2 in motoneurons leads to similar NMJ pathology. STMN2 knockout heterozygous mice, which better model the partial loss of STMN2 protein found in patients with ALS, display a slowly progressive, motor-selective neuropathy with functional deficits and NMJ denervation. Thus, our findings strongly support the hypothesis that STMN2 reduction owing to TDP-43 pathology contributes to ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Stathmin , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Mice, Knockout , Motor Neurons/metabolism , Motor Neurons/pathology , Stathmin/deficiency , Stathmin/genetics , Stathmin/metabolism
11.
Nat Commun ; 13(1): 2686, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35562340

ABSTRACT

Atmospheric humidity and soil moisture in the Amazon forest are tightly coupled to the region's water balance, or the difference between two moisture fluxes, evapotranspiration minus precipitation (ET-P). However, large and poorly characterized uncertainties in both fluxes, and in their difference, make it challenging to evaluate spatiotemporal variations of water balance and its dependence on ET or P. Here, we show that satellite observations of the HDO/H2O ratio of water vapor are sensitive to spatiotemporal variations of ET-P over the Amazon. When calibrated by basin-scale and mass-balance estimates of ET-P derived from terrestrial water storage and river discharge measurements, the isotopic data demonstrate that rainfall controls wet Amazon water balance variability, but ET becomes important in regulating water balance and its variability in the dry Amazon. Changes in the drivers of ET, such as above ground biomass, could therefore have a larger impact on soil moisture and humidity in the dry (southern and eastern) Amazon relative to the wet Amazon.


Subject(s)
Forests , Steam , Isotopes/analysis , Rivers , Soil
12.
Mol Neurodegener ; 17(1): 1, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34991663

ABSTRACT

BACKGROUND: In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. METHODS: To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. RESULTS: Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. CONCLUSIONS: These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions.


Subject(s)
Amyotrophic Lateral Sclerosis , Armadillo Domain Proteins , Cytoskeletal Proteins , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Armadillo Domain Proteins/chemistry , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism , Axons/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Humans , Mice , Neurodegenerative Diseases/metabolism
14.
Cell Rep ; 37(3): 109872, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686345

ABSTRACT

SARM1 is an inducible TIR-domain NAD+ hydrolase that mediates pathological axon degeneration. SARM1 is activated by an increased ratio of NMN to NAD+, which competes for binding to an allosteric activating site. When NMN binds, the TIR domain is released from autoinhibition, activating its NAD+ hydrolase activity. The discovery of this allosteric activating site led us to hypothesize that other NAD+-related metabolites might activate SARM1. Here, we show the nicotinamide analog 3-acetylpyridine (3-AP), first identified as a neurotoxin in the 1940s, is converted to 3-APMN, which activates SARM1 and induces SARM1-dependent NAD+ depletion, axon degeneration, and neuronal death. In mice, systemic treatment with 3-AP causes rapid SARM1-dependent death, while local application to the peripheral nerve induces SARM1-dependent axon degeneration. We identify 2-aminopyridine as another SARM1-dependent neurotoxin. These findings identify SARM1 as a candidate mediator of environmental neurotoxicity and suggest that SARM1 agonists could be developed into selective agents for neurolytic therapy.


Subject(s)
Armadillo Domain Proteins/metabolism , Axons/drug effects , Cytoskeletal Proteins/metabolism , Ganglia, Spinal/drug effects , Nerve Degeneration , Neurotoxicity Syndromes/etiology , Neurotoxins/toxicity , Pyridines/toxicity , Sciatic Nerve/drug effects , Activation, Metabolic , Allosteric Regulation , Animals , Armadillo Domain Proteins/genetics , Axons/enzymology , Axons/pathology , Catalytic Domain , Cell Death , Cytokines/genetics , Cytokines/metabolism , Cytoskeletal Proteins/genetics , Enzyme Activation , Female , Ganglia, Spinal/enzymology , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Neurotoxicity Syndromes/enzymology , Neurotoxicity Syndromes/pathology , Neurotoxins/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Pyridines/metabolism , Sciatic Nerve/enzymology , Sciatic Nerve/pathology , Signal Transduction
15.
Sci Adv ; 7(27)2021 Jul.
Article in English | MEDLINE | ID: mdl-34215577

ABSTRACT

Live woody vegetation is the largest reservoir of biomass carbon, with its restoration considered one of the most effective natural climate solutions. However, terrestrial carbon fluxes remain the largest uncertainty in the global carbon cycle. Here, we develop spatially explicit estimates of carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show that live biomass has removed 4.9 to 5.5 PgC year-1 from the atmosphere, offsetting 4.6 ± 0.1 PgC year-1 of gross emissions from disturbances and adding substantially (0.23 to 0.88 PgC year-1) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sink.

16.
Atmos Chem Phys ; 21(2): 951-971, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33613665

ABSTRACT

We apply airborne measurements across three seasons (summer, winter and spring 2017-2018) in a multi-inversion framework to quantify methane emissions from the US Corn Belt and Upper Midwest, a key agricultural and wetland source region. Combing our seasonal results with prior fall values we find that wetlands are the largest regional methane source (32 %, 20 [16-23] Gg/d), while livestock (enteric/manure; 25 %, 15 [14-17] Gg/d) are the largest anthropogenic source. Natural gas/petroleum, waste/landfills, and coal mines collectively make up the remainder. Optimized fluxes improve model agreement with independent datasets within and beyond the study timeframe. Inversions reveal coherent and seasonally dependent spatial errors in the WetCHARTs ensemble mean wetland emissions, with an underestimate for the Prairie Pothole region but an overestimate for Great Lakes coastal wetlands. Wetland extent and emission temperature dependence have the largest influence on prediction accuracy; better representation of coupled soil temperature-hydrology effects is therefore needed. Our optimized regional livestock emissions agree well with the Gridded EPA estimates during spring (to within 7 %) but are ∼25 % higher during summer and winter. Spatial analysis further shows good top-down and bottom-up agreement for beef facilities (with mainly enteric emissions) but larger (∼30 %) seasonal discrepancies for dairies and hog farms (with >40 % manure emissions). Findings thus support bottom-up enteric emission estimates but suggest errors for manure; we propose that the latter reflects inadequate treatment of management factors including field application. Overall, our results confirm the importance of intensive animal agriculture for regional methane emissions, implying substantial mitigation opportunities through improved management.

17.
Global Biogeochem Cycles ; 34(11): e2020GB006598, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33281280

ABSTRACT

Across temperate North America, interannual variability (IAV) in gross primary production (GPP) and net ecosystem exchange (NEE) and their relationship with environmental drivers are poorly understood. Here, we examine IAV in GPP and NEE and their relationship to environmental drivers using two state-of-the-science flux products: NEE constrained by surface and space-based atmospheric CO2 measurements over 2010-2015 and satellite up-scaled GPP from FluxSat over 2001-2017. We show that the arid western half of temperate North America provides a larger contribution to IAV in GPP (104% of east) and NEE (127% of east) than the eastern half, in spite of smaller magnitude of annual mean GPP and NEE. This occurs because anomalies in western ecosystems are temporally coherent across the growing season leading to an amplification of GPP and NEE. In contrast, IAV in GPP and NEE in eastern ecosystems is dominated by seasonal compensation effects, associated with opposite responses to temperature anomalies in spring and summer. Terrestrial biosphere models in the MsTMIP ensemble generally capture these differences between eastern and western temperate North America, although there is considerable spread between models.

18.
Nat Commun ; 11(1): 1900, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312976

ABSTRACT

The terrestrial carbon sink has significantly increased in the past decades, but the underlying mechanisms are still unclear. The current synthesis of process-based estimates of land and ocean sinks requires an additional sink of 0.6 PgC yr-1 in the last decade to explain the observed airborne fraction. A concurrent global fire decline was observed in association with tropical agriculture expansion and landscape fragmentation. Here we show that a decline of 0.2 ± 0.1 PgC yr-1 in fire emissions during 2008-2014 relative to 2001-2007 also induced an additional carbon sink enhancement of 0.4 ± 0.2 PgC yr-1 attributable to carbon cycle feedbacks, amounting to a combined sink increase comparable to the 0.6 PgC yr-1 budget imbalance. Our results suggest that the indirect effects of fire, in addition to the direct emissions, is an overlooked mechanism for explaining decadal-scale changes in the land carbon sink and highlight the importance of fire management in climate mitigation.

19.
Toxicol Mech Methods ; 29(7): 542-548, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31172850

ABSTRACT

Plethysmograph measurement of respiratory phenotypes provides a highly sensitive means to study nicotine response in experimental model animals. We measured average respiratory frequency, tidal volume, minute volume and inspiratory time in C3H/HeJ and C57BL/6J mice subcutaneously administered 0.35 and 0.70 mg/kg nicotine. Both mouse strains showed significantly altered respiratory and locomotion phenotypes relative to saline-injected controls when administered the higher dose, but only C57BL/6J responded to the lower nicotine dose. Respiratory and locomotion phenotypes rarely differed significantly by sex. To investigate whether the strain-specific differences in nicotine sensitivity were related to differences in clearance, we followed up by measuring nicotine clearance in C3H/HeJ and C57BL/6J mice (0.35 mg/kg subcutaneous) and found sex differences in both strains, but no difference between strains.


Subject(s)
Nicotine/toxicity , Respiration/drug effects , Species Specificity , Animals , Female , Injections, Subcutaneous , Male , Mice, Inbred C3H , Mice, Inbred C57BL , Nicotine/administration & dosage , Nicotine/blood , Nicotine/metabolism , Plethysmography, Whole Body
20.
Biopharm Drug Dispos ; 40(5-6): 188-194, 2019 May.
Article in English | MEDLINE | ID: mdl-31016737

ABSTRACT

Two indole compounds, indole-3-carbinol (I3C) and its acid condensation product, 3,3'-diindolymethane (DIM), have been shown to suppress the expression of flavin-containing monooxygenases (FMO) and to induce some hepatic cytochrome P450s (CYPs) in rats. In liver microsomes prepared from rats fed I3C or DIM, FMO-mediated nicotine N-oxygenation was decreased, whereas CYP-mediated nicotine metabolism to nicotine iminium and subsequently to cotinine was unchanged. Therefore, it was hypothesized that in mice DIM would also suppress nicotine N-oxygenation without affecting CYP-mediated nicotine metabolism. Liver microsomes were produced from male and female C57BL/6 J and CD1 mice fed 2500 parts per million (ppm) DIM for 14 days. In liver microsomes from DIM-fed mice, FMO-mediated nicotine N-oxygenation did not differ from the controls, but CYP-mediated nicotine metabolism was significantly increased, with results varying by sex and strain. To confirm the effects of DIM in vivo, control and DIM-fed CD1 male mice were injected subcutaneously with nicotine, and the plasma concentrations of nicotine, cotinine and nicotine-N-oxide were measured over 30 minutes. The DIM-fed mice showed greater cotinine concentrations compared with the controls 10 minutes following injection. It is concluded that the effects of DIM on nicotine metabolism in vitro and in vivo differ between mice and rats and between mouse strains, and that DIM is an effective inducer of CYP-mediated nicotine metabolism in commonly studied mouse strains.


Subject(s)
Anticarcinogenic Agents/pharmacology , Indoles/pharmacology , Nicotine/pharmacokinetics , Animals , Animals, Outbred Strains , Anticarcinogenic Agents/pharmacokinetics , Brain/metabolism , Cotinine/blood , Female , Indoles/blood , Indoles/pharmacokinetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Nicotine/analogs & derivatives , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL