Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Rep Med ; : 101583, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38781962

ABSTRACT

Little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS2) vaccine breakthrough infections (BTIs) on the magnitude and breadth of the T cell repertoire after exposure to different variants. We studied samples from individuals who experienced symptomatic BTIs during Delta or Omicron waves. In the pre-BTI samples, 30% of the donors exhibited substantial immune memory against non-S (spike) SARS2 antigens, consistent with previous undiagnosed asymptomatic SARS2 infections. Following symptomatic BTI, we observed (1) enhanced S-specific CD4 and CD8 T cell responses in donors without previous asymptomatic infection, (2) expansion of CD4 and CD8 T cell responses to non-S targets (M, N, and nsps) independent of SARS2 variant, and (3) generation of novel epitopes recognizing variant-specific mutations. These variant-specific T cell responses accounted for 9%-15% of the total epitope repertoire. Overall, BTIs boost vaccine-induced immune responses by increasing the magnitude and by broadening the repertoire of T cell antigens and epitopes recognized.

2.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045374

ABSTRACT

Therapeutic anti-SARS-CoV-2 monoclonal antibodies (mAbs) have been extensively studied in humans, but the impact on immune memory of mAb treatment during an ongoing immune response has remained unclear. Here, we evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific defect in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating human memory B cell responses, both to infection and vaccination. These data indicate that mAb administration can promote alterations in the epitopes recognized by the B cell repertoire, and the single administration of mAb can continue to determine the fate of B cells in response to additional antigen exposures months later.

3.
Lancet Infect Dis ; 23(11): 1302-1312, 2023 11.
Article in English | MEDLINE | ID: mdl-37475115

ABSTRACT

BACKGROUND: Monkeypox virus has recently infected more than 88 000 people, raising concerns about our preparedness against this emerging viral pathogen. Licensed and approved for mpox, the JYNNEOS vaccine has fewer side-effects than previous smallpox vaccines and has shown immunogenicity against monkeypox in animal models. This study aims to elucidate human immune responses to JYNNEOS vaccination compared with mpox-induced immunity. METHODS: Peripheral blood mononuclear cells and sera were obtained from ten individuals vaccinated with one or two doses of JYNNEOS and six individuals diagnosed with monkeypox virus infection. Samples were obtained from seven individuals before vaccination to serve as a baseline. We examined the polyclonal serum (ELISA) and single B-cell (heavy chain gene and transcriptome data) antibody repertoires and T-cell responses (activation-induced marker and intracellular cytokine staining assays) induced by the JYNNEOS vaccine versus monkeypox virus infection. FINDINGS: All participants were men between the ages of 21 and 60 years, except for one woman in the group of mpox-convalescent individuals, and none had previous orthopoxvirus exposure. All mpox cases were mild. Vaccinee samples were collected 6-33 days after the first dose and 5-40 days after the second dose. Mpox-convalescent samples were collected 20-102 days after infection. In vaccine recipients, gene-level plasmablast and antibody responses were negligible and sera displayed moderate binding to recombinant orthopoxviral proteins (A29L, A35R, E8L, A30L, A27L, A33R, B18R, and L1R) and native proteins from the 2022 monkeypox outbreak strain. By contrast, recent monkeypox virus infection (within 20-102 days) induced robust serum antibody responses to monkeypox virus proteins and to native monkeypox virus proteins from a viral isolate obtained during the 2022 outbreak. JYNNEOS vaccine recipients presented robust orthopoxviral CD4+ and CD8+ T-cell responses. INTERPRETATION: Infection with monkeypox virus resulted in robust B-cell and T-cell responses, whereas immunisation with JYNNEOS elicited more robust T-cell responses. These data can help to inform vaccine design and policies for preventing mpox in humans. FUNDING: National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), and Icahn School of Medicine.


Subject(s)
Mpox (monkeypox) , Smallpox Vaccine , Vaccines , United States , Animals , Male , Female , Humans , Young Adult , Adult , Middle Aged , Mpox (monkeypox)/prevention & control , Leukocytes, Mononuclear , Vaccination , Monkeypox virus
4.
medRxiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945651

ABSTRACT

Background: Mpox (formerly known as monkeypox) outbreaks outside endemic areas peaked in July 2022, infecting > 85,000 people and raising concerns about our preparedness against this emerging viral pathogen. Licensed and approved for mpox, the JYNNEOS vaccine has fewer side effects than previous smallpox vaccines and demonstrated efficacy against mpox infection in humans. Comparing JYNNEOS vaccine- and mpox-induced immunity is imperative to evaluate JYNNEOS' immunogenicity and inform vaccine administration and design. Methods: We examined the polyclonal serum (ELISA) and single B cell (heavy chain gene and transcriptome data) antibody repertoires and T cells (AIM and ICS assays) induced by the JYNNEOS vaccine as well as mpox infection. Findings: Gene-level plasmablast and antibody responses were negligible and JYNNEOS vaccinee sera displayed minimal binding to recombinant mpox proteins and native proteins from the 2022 outbreak strain. In contrast, recent mpox infection (within 20-102 days) induced robust serum antibody responses to A29L, A35R, A33R, B18R, and A30L, and to native mpox proteins, compared to vaccinees. JYNNEOS vaccine recipients presented comparable CD4 and CD8 T cell responses against orthopox peptides to those observed after mpox infection. Interpretation: JYNNEOS immunization does not elicit a robust B cell response, and its immunogenicity may be mediated by T cells. Funding: Research reported in this publication was supported, in part, by the National Cancer Institute of the National Institutes of Health under Award Number U54CA267776, U19AI168631(VS), as well as institutional funds from the Icahn School of Medicine.

5.
iScience ; 25(10): 105202, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36168391

ABSTRACT

The ongoing evolution of SARS-CoV-2 requires monitoring the capability of immune responses to cross-recognize Variants of Concern (VOC). In this cross-sectional study, we examined serological and cell-mediated immune memory to SARS-CoV-2 variants, including Omicron, among a cohort of 18-21-year-old Marines with a history of either asymptomatic or mild SARS-CoV-2 infection 6 to 14 months earlier. Among the 210 participants in the study, 169 were unvaccinated while 41 received 2 doses of mRNA-based COVID-19 vaccines. Vaccination of previously infected participants strongly boosted neutralizing and binding activity and memory B and T cell responses including the recognition of Omicron, compared to infected but unvaccinated participants. Additionally, no measurable differences were observed in immune memory in healthy young adults with previous symptomatic or asymptomatic infections, for ancestral or variant strains. These results provide mechanistic immunological insights into population-based differences observed in immunity against Omicron and other variants among individuals with different clinical histories.

6.
J Infect Dis ; 227(1): 18-22, 2022 12 28.
Article in English | MEDLINE | ID: mdl-35892131

ABSTRACT

BACKGROUND: The development of memory B cells after asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well understood. METHODS: We compared spike antibody titers, pseudovirus neutralizing antibody titers, and memory B-cell responses among SARS-CoV-2 PCR-positive Marine recruits who either reported asymptomatic or symptomatic infection. RESULTS: Thirty-six asymptomatic participants exhibited similar spike IgG titers, spike IgA titers, and pseudovirus neutralization titers compared to 30 symptomatic participants. Pseudovirus neutralization and spike IgG titers showed significant positive correlations with frequency of memory B cells. CONCLUSIONS: Among young adults, asymptomatic SARS-CoV-2 infection induced antibody and memory B-cell responses comparable to mild symptomatic infection.


Subject(s)
COVID-19 , Young Adult , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Immunoglobulin G , Spike Glycoprotein, Coronavirus
7.
Cell ; 185(14): 2434-2451.e17, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35764089

ABSTRACT

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike-specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S, and Novavax NVX-CoV2373 were examined longitudinally for 6 months 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though only detectable in 60-67% of subjects at 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in antibodies, while memory T and B cells were comparatively stable. These results may also be relevant for insights against other pathogens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Humoral , Immunologic Memory , SARS-CoV-2
8.
bioRxiv ; 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35350195

ABSTRACT

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike-specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S and Novavax NVX-CoV2373 were examined longitudinally for 6 months. 100% of individuals made memory CD4 + T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8 + T cell frequencies, though memory CD8 + T cells were only detectable in 60-67% of subjects at 6 months. Ad26.COV2.S was not the strongest immunogen by any measurement, though the Ad26.COV2.S T cell, B cell, and antibody responses were relatively stable over 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3 + memory B cells. mRNA vaccinees had substantial declines in neutralizing antibodies, while memory T cells and B cells were comparatively stable over 6 months. These results of these detailed immunological evaluations may also be relevant for vaccine design insights against other pathogens.

9.
Clin Transl Gastroenterol ; 13(4): e00484, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35347100

ABSTRACT

Immune-modulating medications for inflammatory bowel diseases (IBDs) have been associated with suboptimal vaccine responses. There are conflicting data with SARS-CoV-2 vaccination. We therefore assessed SARS-CoV-2 vaccine immunogenicity at 2 weeks after second mRNA vaccination in 29 patients with IBD compared with 12 normal healthy donors. We observed reduced humoral immunity in patients with IBD on infliximab. However, we observed no difference in humoral and cell-mediated immunity in patients with IBD on infliximab with a thiopurine or vedolizumab compared with normal healthy donors. This is the first study to demonstrate comparable cell-mediated immunity with SARS-CoV-2 vaccination in patients with IBD treated with different immune-modulating medications.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , COVID-19/prevention & control , COVID-19 Vaccines , Chronic Disease , Humans , Inflammatory Bowel Diseases/drug therapy , Infliximab/pharmacology , Infliximab/therapeutic use , SARS-CoV-2
10.
Cell ; 185(5): 847-859.e11, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35139340

ABSTRACT

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Subject(s)
COVID-19 Vaccines/immunology , Memory B Cells/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Ad26COVS1/administration & dosage , Ad26COVS1/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Epitopes/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Memory B Cells/metabolism , Memory T Cells/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vaccination
11.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34860581

ABSTRACT

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Subject(s)
Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Lymph/drug effects , Saponins/pharmacology , Toll-Like Receptors/agonists , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Lymph/physiology , Macaca mulatta , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Rats , Rats, Wistar
12.
Sci Immunol ; 6(65): eabl9105, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34618554

ABSTRACT

Adaptive immune responses to SARS-CoV-2 infection have been extensively characterized in blood; however, most functions of protective immunity must be accomplished in tissues. Here, we report from examination of SARS-CoV-2 seropositive organ donors (ages 10 to 74) that CD4+ T, CD8+ T, and B cell memory generated in response to infection is present in the bone marrow, spleen, lung, and multiple lymph nodes (LNs) for up to 6 months after infection. Lungs and lung-associated LNs were the most prevalent sites for SARS-CoV-2­specific memory T and B cells with significant correlations between circulating and tissue-resident memory T and B cells in all sites. We further identified SARS-CoV-2­specific germinal centers in the lung-associated LNs up to 6 months after infection. SARS-CoV-2­specific follicular helper T cells were also abundant in lung-associated LNs and lungs. Together, the results indicate local tissue coordination of cellular and humoral immune memory against SARS-CoV-2 for site-specific protection against future infectious challenges.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Cellular , Immunologic Memory , Lymphocytes/immunology , SARS-CoV-2/immunology , Female , Humans , Male , Organ Specificity/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...