Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
J Endocrinol ; 261(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579751

ABSTRACT

Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.


Subject(s)
Fatty Liver , Glucagon , Humans , Glucagon/metabolism , Glucagon/blood , Fatty Liver/metabolism , Obesity/metabolism , Fibroblast Growth Factors/metabolism , Liver/metabolism , Glucagon-Like Peptide 1/metabolism , Animals
2.
Dig Dis Sci ; 69(4): 1496-1506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38376788

ABSTRACT

BACKGROUND & AIMS: Concurrent hepatic steatosis has diverse effects on chronic hepatitis B (CHB), however the combined effects of metabolic dysfunction-associated steatotic liver disease (MASLD) and CHB on liver fibrosis progression remains unclear. The primary aim of this study was to utilize serial fibrosis measurements to compare the dynamic change in fibrosis in CHB patients with/without concurrent MASLD. The secondary aim was to investigate factors associated with steatosis development and regression in CHB patients. METHODS: This was a retrospective cohort study of all non-cirrhotic CHB patients identified from 1/1/2011 to 31/12/2016. Hepatic steatosis was diagnosed by ultrasound. Fibrosis markers included liver stiffness (LSM) by transient elastography, APRI and FIB-4. General linear mixed effects modelling was used to fit polynomial and linear estimates. RESULTS: Of 810 CHB patients (n = 2,373 LSM measurements; median age 44.4y; 48% male; 24% HBeAg positive), 14% had concurrent MASLD. LSM was higher at baseline but decreased in MASLD patients over time, while LSM remained stable in non-MASLD patients, such that all patients had similar LSM beyond 4-5 years. MASLD patients had lower APRI compared to non-MASLD patients, which was predominately due to a higher platelet count and higher ALT over time. There was substantial discordance between LSM, APRI and FIB-4. Baseline BMI was the only factor that predicted steatosis development and regression. CONCLUSIONS: We found no evidence of an association between concurrent MASLD and fibrosis progression amongst CHB patients without baseline advanced liver disease. APRI and FIB-4 may have reduced accuracy in MASLD patients.


Subject(s)
Elasticity Imaging Techniques , Fatty Liver , Hepatitis B, Chronic , Non-alcoholic Fatty Liver Disease , Humans , Male , Adult , Female , Hepatitis B, Chronic/complications , Retrospective Studies , Liver Cirrhosis/diagnosis , Fatty Liver/complications , Non-alcoholic Fatty Liver Disease/complications
3.
Mol Metab ; 81: 101895, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340808

ABSTRACT

Peptide YY (PYY3-36) is a post-prandially released gut hormone with potent appetite-reducing activity, the mechanism of action of which is not fully understood. Unravelling how this system physiologically regulates food intake may help unlock its therapeutic potential, whilst minimising unwanted effects. Here we demonstrate that germline and post-natal targeted knockdown of the PYY3-36 preferring receptor (neuropeptide Y (NPY) Y2 receptor (Y2R)) in the afferent vagus nerve is required for the appetite inhibitory effects of physiologically-released PYY3-36, but not peripherally administered pharmacological doses. Post-natal knockdown of the Y2R results in a transient body weight phenotype that is not evident in the germline model. Loss of vagal Y2R signalling also results in altered meal patterning associated with accelerated gastric emptying. These results are important for the design of PYY-based anti-obesity agents.


Subject(s)
Gastrointestinal Hormones , Peptide YY , Peptide YY/physiology , Appetite/physiology , Vagus Nerve , Eating
4.
Diabetes Obes Metab ; 26(4): 1479-1491, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38229453

ABSTRACT

AIMS: To determine whether a continuous infusion of a glucagon-like peptide receptor (GLP-1R)/glucagon receptor (GCGR) co-agonist, G3215 is safe and well tolerated in adults with overweight or obesity. METHODS: A phase 1 randomized, double blind, placebo-controlled trial of G3215 in overweight or obese participants, with or without type 2 diabetes. RESULTS: Twenty-six participants were recruited and randomized with 23 completing a 14-day subcutaneous infusion of G3215 or placebo. The most common adverse events were nausea or vomiting, which were mild in most cases and mitigated by real-time adjustment of drug infusion. There were no cardiovascular concerns with G3215 infusion. The pharmacokinetic characteristics were in keeping with a continuous infusion over 14 days. A least-squares mean body weight loss of 2.39 kg was achieved with a 14-day infusion of G3215, compared with 0.84 kg with placebo infusion (p < .05). A reduction in food consumption was also observed in participants receiving G3215 and there was no deterioration in glycaemia. An improved lipid profile was seen in G3215-treated participants and consistent with GCGR activation, a broad reduction in circulating amino acids was seen during the infusion period. CONCLUSION: An adaptive continuous infusion of the GLP-1/GCGR co-agonist, G3215, is safe and well tolerated offering a unique strategy to control drug exposure. By allowing rapid, response-directed titration, this strategy may allow for mitigation of adverse effects and afford significant weight loss within shorter time horizons than is presently possible with weekly GLP-1R and multi-agonists. These results support ongoing development of G3215 for the treatment of obesity and metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2 , Overweight , Adult , Humans , Overweight/complications , Overweight/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Receptors, Glucagon , Obesity/complications , Obesity/drug therapy , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide-1 Receptor/therapeutic use
5.
Diabetes Obes Metab ; 26(1): 65-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37795639

ABSTRACT

AIM: Earlier studies have shown that peptide glucagon-like peptide-1 receptor (GLP-1R) agonists with reduced ß-arrestin recruitment show enhanced anti-hyperglycaemic efficacy through avoidance of GLP-1R desensitization. However, the ligand modifications needed to decrease ß-arrestin recruitment usually also reduces GLP-1R affinity, therefore higher doses are needed. Here we aimed to develop new, long-acting, G protein-biased GLP-1R agonists with acute signalling potency comparable with semaglutide, to provide insights into specific experimental and therapeutic scenarios. MATERIALS AND METHODS: New GLP-1R agonist peptides were assessed using a variety of in vitro and in vivo assays. RESULTS: First, we show that very substantial reductions in ß-arrestin recruitment efficacy are required to realize fully the benefits of GLP-1R agonism on blood glucose lowering in mice, with more moderate reductions being less effective. Secondly, our lead compound (SRB107) performs substantially better than semaglutide for effects on blood glucose and weight loss, which may be jointly attributable to its biased agonist action and protracted pharmacokinetics. Thirdly, we show that biased agonist-specific GLP-1R internalization profiles occur at clinically relevant pharmacological concentrations. Finally, we show that SRB107 cAMP signalling is differentially modulated by single and double GLP1R coding variants seen in human populations, with implications for GLP-1R agonist pharmacogenomics. CONCLUSIONS: Completely abolishing ß-arrestin recruitment improves the anti-hyperglycaemic effects of GLP-1R agonists in mice.


Subject(s)
Blood Glucose , Glucagon-Like Peptide-1 Receptor Agonists , Humans , Animals , Mice , beta-Arrestins/metabolism , Peptides/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , GTP-Binding Proteins/metabolism
7.
BMJ Open ; 13(9): e072327, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770263

ABSTRACT

INTRODUCTION: Left gastric artery embolisation (LGAE) is a well-established treatment for major upper gastrointestinal (GI) bleeding when control is not established via upper GI endoscopy and recently has shown promising results for weight loss in small single arm studies. LGAE could be a treatment option in between our current tier-3 and tier-4 services for obesity. EMBIO is a National Institute for Health Research funded trial, a multicentre double-blinded randomised controlled trial between Imperial College National Health Service Trust and University College London Hospital, comparing LGAE versus Placebo procedure. The key aims of the trial is to evaluate LGAE efficacy on weight loss, its mechanism of action, safety profile and obesity-related comorbidities. METHODS AND ANALYSIS: 76 participants will be recruited from the existing tier-3 database after providing informed consent. Key inclusion criteria include adults aged 18-70 with a body mass index 35-50 kg/m2 and appropriate anatomy of the left gastric artery and coeliac plexus on CT Angiogram. Key exclusion criteria included previous major abdominal and bariatric surgery, weight >150 kg, type 2 diabetes on any medications other than metformin and the use of weight modifying medications. Participants will undergo mechanistic visits 1 week prior to the intervention and 3, 6 and 12 months postintervention. Informed consent will be received from each participant and they will be randomised in a 1:1 ratio to left gastric artery embolisation and placebo treatment. Blinding strategies include the use of moderate doses of sedation, visual and auditory isolation. All participants will enter a tier-3 weight management programme postintervention. The primary analysis will estimate the difference between the groups in the mean per cent weight loss at 12 months. ETHICS AND DISSEMINATION: This trial shall be conducted in full conformity with the 1964 Declaration of Helsinki and all subsequent revisions. Local research ethics approval was granted by London-Central Research Ethics Committee, (Reference 19/LO/0509) on 11 October 2019. The Medicines and Healthcare products Regulatory Agency (MHRA) issued the Letter of No Objection on 8 April 2022 (Reference CI/2022/0008/GB). The trial's development and progress are monitored by an independent trial steering committee and data monitoring and ethics committee. The researchers plan to disseminate results at conferences, in peer- reviewed journals as well as lay media and to patient organisations. TRIAL REGISTRATION NUMBER: ISRCTN16158402.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Adult , Humans , SARS-CoV-2 , Body Mass Index , Gastric Artery , State Medicine , Obesity/complications , Obesity/therapy , Treatment Outcome , Weight Loss , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
8.
Diabetologia ; 66(8): 1378-1394, 2023 08.
Article in English | MEDLINE | ID: mdl-37367959

ABSTRACT

The peptide hormone glucagon, discovered in late 1922, is secreted from pancreatic alpha cells and is an essential regulator of metabolic homeostasis. This review summarises experiences since the discovery of glucagon regarding basic and clinical aspects of this hormone and speculations on the future directions for glucagon biology and glucagon-based therapies. The review was based on the international glucagon conference, entitled 'A hundred years with glucagon and a hundred more', held in Copenhagen, Denmark, in November 2022. The scientific and therapeutic focus of glucagon biology has mainly been related to its role in diabetes. In type 1 diabetes, the glucose-raising properties of glucagon have been leveraged to therapeutically restore hypoglycaemia. The hyperglucagonaemia evident in type 2 diabetes has been proposed to contribute to hyperglycaemia, raising questions regarding underlying mechanism and the importance of this in the pathogenesis of diabetes. Mimicry experiments of glucagon signalling have fuelled the development of several pharmacological compounds including glucagon receptor (GCGR) antagonists, GCGR agonists and, more recently, dual and triple receptor agonists combining glucagon and incretin hormone receptor agonism. From these studies and from earlier observations in extreme cases of either glucagon deficiency or excess secretion, the physiological role of glucagon has expanded to also involve hepatic protein and lipid metabolism. The interplay between the pancreas and the liver, known as the liver-alpha cell axis, reflects the importance of glucagon for glucose, amino acid and lipid metabolism. In individuals with diabetes and fatty liver diseases, glucagon's hepatic actions may be partly impaired resulting in elevated levels of glucagonotropic amino acids, dyslipidaemia and hyperglucagonaemia, reflecting a new, so far largely unexplored pathophysiological phenomenon termed 'glucagon resistance'. Importantly, the hyperglucagonaemia as part of glucagon resistance may result in increased hepatic glucose production and hyperglycaemia. Emerging glucagon-based therapies show a beneficial impact on weight loss and fatty liver diseases and this has sparked a renewed interest in glucagon biology to enable further pharmacological pursuits.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Non-alcoholic Fatty Liver Disease , Humans , Glucagon/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Hyperglycemia/metabolism , Amino Acids
9.
Liver Int ; 43(9): 1890-1900, 2023 09.
Article in English | MEDLINE | ID: mdl-37208943

ABSTRACT

BACKGROUND AND AIMS: Sleeve gastrectomy (VSG) leads to improvement in hepatic steatosis, associated with weight loss. The aims of this study were to investigate whether VSG leads to weight-loss independent improvements in liver steatosis in mice with diet-induced obesity (DIO); and to metabolically and transcriptomically profile hepatic changes in mice undergoing VSG. METHODS: Mice with DIO were treated with VSG, sham surgery with subsequent food restriction to weight-match to the VSG group (Sham-WM), or sham surgery with return to unrestricted diet (Sham-Ad lib). Hepatic steatosis, glucose tolerance, insulin and glucagon resistance, and hepatic transcriptomics were investigated at the end of the study period and treatment groups were compared with mice undergoing sham surgery only (Sham-Ad lib). RESULTS: VSG led to much greater improvement in liver steatosis than Sham-WM (liver triglyceride mg/mg 2.5 ± 0.1, 2.1 ± 0.2, 1.6 ± 0.1 for Sham-AL, Sham-WM and VSG respectively; p = 0.003). Homeostatic model assessment of insulin resistance was improved following VSG only (51.2 ± 8.8, 36.3 ± 5.3, 22.3 ± 6.1 for Sham-AL, Sham-WM and VSG respectively; p = 0.03). The glucagon-alanine index, a measure of glucagon resistance, fell with VSG but was significantly increased in Sham-WM (9.8 ± 1.7, 25.8 ± 4.6 and 5.2 ± 1.2 in Sham Ad-lib, Sham-WM and VSG respectively; p = 0.0003). Genes downstream of glucagon receptor signalling which govern fatty acid synthesis (Acaca, Acacb, Me1, Acly, Fasn and Elovl6) were downregulated following VSG but upregulated in Sham-WM. CONCLUSIONS: Changes in glucagon sensitivity may contribute to weight-loss independent improvements in hepatic steatosis following VSG.


Subject(s)
Fatty Liver , Glucagon , Mice , Animals , Blood Glucose , Weight Loss , Obesity/complications , Obesity/surgery , Fatty Liver/complications , Gastrectomy/adverse effects
11.
Diabetes Obes Metab ; 25(6): 1731-1739, 2023 06.
Article in English | MEDLINE | ID: mdl-36811311

ABSTRACT

AIMS: To investigate whether the elevation in postprandial concentrations of the gut hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM) and peptide YY (PYY) accounts for the beneficial changes in food preferences, sweet taste function and eating behaviour after Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS: This was a secondary analysis of a randomized single-blind study in which we infused GLP-1, OXM, PYY (GOP) or 0.9% saline subcutaneously for 4 weeks in 24 subjects with obesity and prediabetes/diabetes, to replicate their peak postprandial concentrations, as measured at 1 month in a matched RYGB cohort (ClinicalTrials.gov NCT01945840). A 4-day food diary and validated eating behaviour questionnaires were completed. Sweet taste detection was measured using the method of constant stimuli. Correct sucrose identification (corrected hit rates) was recorded, and sweet taste detection thresholds (EC50s: half maximum effective concencration values) were derived from concentration curves. The intensity and consummatory reward value of sweet taste were assessed using the generalized Labelled Magnitude Scale. RESULTS: Mean daily energy intake was reduced by 27% with GOP but no significant changes in food preferences were observed, whereas a reduction in fat and increase in protein intake were seen post-RYGB. There was no change in corrected hit rates or detection thresholds for sucrose detection following GOP infusion. Additionally, GOP did not alter the intensity or consummatory reward value of sweet taste. A significant reduction in restraint eating, comparable to the RYGB group was observed with GOP. CONCLUSION: The elevation in plasma GOP concentrations after RYGB is unlikely to mediate changes in food preferences and sweet taste function after surgery but may promote restraint eating.


Subject(s)
Gastric Bypass , Gastrointestinal Hormones , Prediabetic State , Humans , Taste , Food Preferences , Single-Blind Method , Prediabetic State/complications , Obesity/complications , Obesity/surgery , Gastric Bypass/adverse effects , Gastric Bypass/methods , Peptide YY/metabolism , Glucagon-Like Peptide 1/metabolism , Sucrose , Volunteers
12.
Liver Int ; 43(5): 989-999, 2023 05.
Article in English | MEDLINE | ID: mdl-36719055

ABSTRACT

BACKGROUND: Alanine aminotransferase (ALT) measurement is essential for evaluation of liver disease. We validated a novel rapid point-of-care (POC) test for ALT1 against laboratory ALT. METHODS: Stored plasma samples from adults with chronic liver disease (Test cohort n = 240; Validation cohort n = 491) were analysed using the BioPoint® antigen immunoassay POC ALT1 lateral flow test, which provides quantitative ALT results (Axxin handheld reader) or semi-quantitative results (visual read, cut off 40 IU/ml). The accuracy of POC ALT1 to detect ALT > 40 IU/L was determined by ROC analysis. In patients with chronic hepatitis B, treatment eligibility (EASL criteria) was determined using POC ALT1 and compared to laboratory ALT. RESULTS: POC ALT1 test had good accuracy for laboratory ALT > 40 IU/L: AUROC 0.93 (95% CI: 0.89-0.96) in the Test cohort and AUROC 0.92 (95% CI: 0.88-0.95) in the Validation cohort. POC ALT1 cut off of 0.8 for ALT > 40 IU/L maximised sensitivity (97%) and specificity (71%) in the Test cohort (42% laboratory ALT > 40 IU/L) and yielded PPV 84% and NPV 91% in the Validation cohort (19% laboratory ALT > 40 IU/L). Semi-quantitative POC ALT1 had good accuracy for laboratory ALT in the Validation cohort (AUROC 0.85, 95% CI: 0.81-0.99; sensitivity 77% and specificity 93%). Combined with HBV DNA and transient elastography, both quantitative and semi-quantitative POC ALT1 tests had good accuracy for excluding hepatitis B treatment needs (sensitivity 96%, specificity 78% and NPV 99%). CONCLUSION: The POC ALT1 test had good accuracy for elevated ALT levels and for determining treatment eligibility among people with chronic hepatitis B.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Adult , Humans , Alanine Transaminase , Hepatitis B, Chronic/diagnosis , Pilot Projects , Cohort Studies , DNA, Viral
13.
Liver Int ; 43(1): 90-99, 2023 01.
Article in English | MEDLINE | ID: mdl-36050821

ABSTRACT

BACKGROUND AND AIMS: Progressive liver fibrosis related to non-alcoholic fatty liver disease (NAFLD) is associated with all-cause and liver-related mortality. We assessed vibration-controlled transient elastography (VCTE) as a predictor of mortality. METHOD: Data from patients who underwent VCTE for NAFLD at four large health services in Victoria, Australia between the years 2008 and 2019 were linked to state-wide data registries. Cause of death (COD) and predictors of all-cause mortality were subsequently analysed using descriptive statistics and Cox-proportional regression analysis. RESULTS: Of 7079 VCTE records submitted for data linkage, 6341 were matched via data registry linkage. There were 217 deaths over a 22 653 person-year follow-up. COD included malignancies other than hepatocellular carcinoma (HCC) (18.0%, n = 39), sepsis (16.1%, n = 35), decompensated liver disease (15.2%, n = 33), cardiac disease (15.2%, n = 33) and HCC 6.0% (n = 13). Controlled attenuation parameter (CAP) was not associated with mortality in univariable analysis (HR = 1.00, CI 1.0-1.0, p = .488). Increased liver stiffness measurement (LSM) (HR 1.02 per kiloPascal, CI 1.01-1.03, p < .001), Charlson comorbidity index (CCI) (HR 1.32 for each point, CI 1.27-1.38, p < .001) and age (HR 1.05 per annum, CI 1.03-1.07, p < .001) were each associated with higher rates of all-cause mortality in multivariable analysis. LSM ≥10 kPa suggestive of compensated advanced chronic liver disease (cACLD) was associated with mortality in multivariable analysis (HR 2.31, CI 1.73-3.09, p < .001). CONCLUSION: VCTE LSM, in addition to age and CCI, is independently associated with increased all-cause mortality in a large cohort with NAFLD.


Subject(s)
Carcinoma, Hepatocellular , Elasticity Imaging Techniques , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Liver Cirrhosis/complications , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Liver/pathology
14.
Clin Endocrinol (Oxf) ; 99(3): 272-284, 2023 09.
Article in English | MEDLINE | ID: mdl-36345253

ABSTRACT

OBJECTIVES: Peptide tyrosine tyrosine (PYY) exists as two species, PYY1-36 and PYY3-36 , with distinct effects on insulin secretion and appetite regulation. The detailed effects of bariatric surgery on PYY1-36 and PYY3-36 secretion are not known as previous studies have used nonspecific immunoassays to measure total PYY. Our objective was to characterize the effect of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on fasting and postprandial PYY1-36 and PYY3-36 secretion using a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. DESIGN AND SUBJECTS: Observational study in 10 healthy nonobese volunteers and 30 participants with obesity who underwent RYGB (n = 24) or SG (n = 6) at the Imperial Weight Centre [NCT01945840]. Participants were studied using a standardized mixed meal test (MMT) before and 1 year after surgery. The outcome measures were PYY1-36 and PYY3-36 concentrations. RESULTS: Presurgery, the fasting and postprandial levels of PYY1-36 and PYY3-36 were low, with minimal responses to the MMT, and these did not differ from healthy nonobese volunteers. The postprandial secretion of both PYY1-36 and PYY3-36 at 1 year was amplified after RYGB, but not SG, with the response being significantly higher in RYGB compared with SG. CONCLUSIONS: There appears to be no difference in PYY secretion between nonobese and obese volunteers at baseline. At 1 year after surgery, RYGB, but not SG, is associated with increased postprandial secretion of PYY1-36 and PYY3-36 , which may account for long-term differences in efficacy and adverse effects between the two types of surgery.


Subject(s)
Gastric Bypass , Humans , Gastric Bypass/methods , Peptide YY , Chromatography, Liquid , Blood Glucose , Tandem Mass Spectrometry , Obesity/surgery , Gastrectomy , Tyrosine
15.
Cell Rep Med ; 3(11): 100810, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384093

ABSTRACT

Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics.


Subject(s)
Glucagon , Weight Loss , Mice , Animals , Glucagon/metabolism , Energy Metabolism/physiology , Receptors, Glucagon/metabolism , Mice, Obese , Amino Acids/pharmacology
16.
JACC Cardiovasc Interv ; 15(21): 2158-2170, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36357020

ABSTRACT

BACKGROUND: Incomplete left atrial appendage (LAA) closure is an evolving topic of clinical significance and thromboembolic potential, with recent long-term studies suggesting lower cutoffs for relevant leak size. OBJECTIVES: The aim of this prospective observational study was to assess 3 different closure techniques for persistent peridevice leaks after incomplete LAA closure and compare their efficacy and safety outcomes. METHODS: We studied 160 patients (mean age 72 ± 9 years; 71% men) who underwent 1 of the 3 available modalities (detachable embolization coils, vascular plugs or septal occluders, and radiofrequency ablation) for residual central or eccentric leak closure. Both acute postprocedural success (closure or <1-mm leak at the end of the procedure) and closure at 1-year follow-up transesophageal echocardiography imaging were evaluated. RESULTS: Of 160 patients, 0.6%, 41.3%, and 58.1% had mild (1-2 mm), moderate (3-5 mm), and severe (≥5 mm) leaks, respectively. Baseline LAA closure type was 72.5% Watchman FLX, 16.3% Lariat, 5.6% surgical ligation, 1.9% AtriClip, and 1.9% Amulet. Successful closure (0- or <1-mm leak) was seen in 100% of patients in all cohorts following intervention, with overall complete closure (0-1 mm) or mild or minimal leaks (1-2 mm) on 1-year follow-up transesophageal echocardiography seen in 100% of the atrial septal occluder or vascular plug cohort, 85.9% of the coil cohort, and 83.3% of the radiofrequency ablation cohort (P < 0.001). Two patients (1.3%) experienced cardiac tamponade, and there were no deaths or other complications. CONCLUSIONS: Peridevice leaks can safely and effectively be closed using 3 different modalities depending on size and location.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Septal Occluder Device , Male , Humans , Middle Aged , Aged , Aged, 80 and over , Female , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/therapy , Atrial Fibrillation/complications , Treatment Outcome , Echocardiography, Transesophageal , Cardiac Catheterization/adverse effects
18.
Nutrients ; 14(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145251

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease in Australia and is recognised to play a role in the development of hepatocellular carcinoma (HCC). There are no clear guidelines regarding screening for HCC in NAFLD. The aim of this retrospective study was to compare the characteristics and survival rates of NAFLD-HCC to patients with non-NAFLD-HCC to help guide future research in this area. METHODS: A total of 152 HCC patients with either NAFLD (n = 36) or non-NAFLD (n = 116) were retrospectively analysed from the HCC database and medical records. Chi-square and independent t-test were used to compare baseline characteristics and Kaplan-Meier curves and Cox models were used for survival analysis. RESULTS: Patients with NAFLD-HCC were more likely to be diagnosed due to symptoms rather than through screening, and at an older age, compared with non-NAFLD HCC. The median survival rates were lower in NAFLD-HCC (17.2 months) than in those with non-NAFLD-HCC (23.5 months). CONCLUSION: There is a rise in the number of HCC cases in patients with NAFLD, and this has significant implications for hepatologists as they are presented with more advanced diseases and have poorer outcomes. Future studies on HCC will need to identify this group earlier in order to have an impact on the HCC survival rate.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Humans , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Retrospective Studies , Risk Factors
19.
Mol Metab ; 63: 101530, 2022 09.
Article in English | MEDLINE | ID: mdl-35718339

ABSTRACT

OBJECTIVE: To determine whether glucagon receptor (GCGR) actions are modulated by cellular cholesterol levels. METHODS: We determined the effects of experimental cholesterol depletion and loading on glucagon-mediated cAMP production, ligand internalisation and glucose production in human hepatoma cells, mouse and human hepatocytes. GCGR interactions with lipid bilayers were explored using coarse-grained molecular dynamic simulations. Glucagon responsiveness was measured in mice fed a high cholesterol diet with or without simvastatin to modulate hepatocyte cholesterol content. RESULTS: GCGR cAMP signalling was reduced by higher cholesterol levels across different cellular models. Ex vivo glucagon-induced glucose output from mouse hepatocytes was enhanced by simvastatin treatment. Mice fed a high cholesterol diet had increased hepatic cholesterol and a blunted hyperglycaemic response to glucagon, both of which were partially reversed by simvastatin. Simulations identified likely membrane-exposed cholesterol binding sites on the GCGR, including a site where cholesterol is a putative negative allosteric modulator. CONCLUSIONS: Our results indicate that cellular cholesterol content influences glucagon sensitivity and indicate a potential molecular basis for this phenomenon. This could be relevant to the pathogenesis of non-alcoholic fatty liver disease, which is associated with both hepatic cholesterol accumulation and glucagon resistance.


Subject(s)
Cholesterol , Glucagon , Glucose , Hepatocytes , Receptors, Glucagon , Animals , Cholesterol/analysis , Cholesterol/metabolism , Glucagon/metabolism , Glucose/metabolism , Hepatocytes/chemistry , Hepatocytes/metabolism , Humans , Mice , Receptors, Glucagon/metabolism , Simvastatin/metabolism , Simvastatin/pharmacology
20.
J Clin Endocrinol Metab ; 107(2): e767-e782, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34460933

ABSTRACT

CONTEXT: The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY) are regulators of energy intake and glucose homeostasis and are thought to contribute to the glucose-lowering effects of bariatric surgery. OBJECTIVE: To establish the metabolomic effects of a combined infusion of GLP-1, OXM, and PYY (tripeptide GOP) in comparison to a placebo infusion, Roux-en-Y gastric bypass (RYGB) surgery, and a very low-calorie diet (VLCD). DESIGN AND SETTING: Subanalysis of a single-blind, randomized, placebo-controlled study of GOP infusion (ClinicalTrials.gov NCT01945840), including VLCD and RYGB comparator groups. PATIENTS AND INTERVENTIONS: Twenty-five obese patients with type 2 diabetes or prediabetes were randomly allocated to receive a 4-week subcutaneous infusion of GOP (n = 14) or 0.9% saline control (n = 11). An additional 22 patients followed a VLCD, and 21 underwent RYGB surgery. MAIN OUTCOME MEASURES: Plasma and urine samples collected at baseline and 4 weeks into each intervention were subjected to cross-platform metabolomic analysis, followed by unsupervised and supervised modeling approaches to identify similarities and differences between the effects of each intervention. RESULTS: Aside from glucose, very few metabolites were affected by GOP, contrasting with major metabolomic changes seen with VLCD and RYGB. CONCLUSIONS: Treatment with GOP provides a powerful glucose-lowering effect but does not replicate the broader metabolomic changes seen with VLCD and RYGB. The contribution of these metabolomic changes to the clinical benefits of RYGB remains to be elucidated.


Subject(s)
Caloric Restriction/statistics & numerical data , Diabetes Mellitus, Type 2/therapy , Gastric Bypass/statistics & numerical data , Gastrointestinal Hormones/administration & dosage , Obesity, Morbid/therapy , Adult , Aged , Blood Glucose/analysis , Caloric Restriction/methods , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/urine , Drug Therapy, Combination/methods , Female , Gastric Bypass/methods , Glucagon-Like Peptide 1/administration & dosage , Humans , Infusions, Subcutaneous , Male , Metabolomics/statistics & numerical data , Middle Aged , Obesity, Morbid/blood , Obesity, Morbid/metabolism , Obesity, Morbid/urine , Oxyntomodulin/administration & dosage , Peptide YY/administration & dosage , Single-Blind Method , Treatment Outcome , Weight Loss , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...