Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 44(8): 3023-3044, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36896711

ABSTRACT

Statistical effects of cortical metrics derived from standard T1- and T2-weighted magnetic resonance imaging (MRI) images, such as gray-white matter contrast (GWC), boundary sharpness coefficient (BSC), T1-weighted/T2-weighted ratio (T1w/T2w), and cortical thickness (CT), are often interpreted as representing or being influenced by intracortical myelin content with little empirical evidence to justify these interpretations. We first examined spatial correspondence with more biologically specific microstructural measures, and second compared between-marker age-related trends with the underlying hypothesis that different measures primarily driven by similar changes in myelo- and microstructural underpinnings should be highly related. Cortical MRI markers were derived from MRI images of 127 healthy subjects, aged 18-81, using cortical surfaces that were generated with the CIVET 2.1.0 pipeline. Their gross spatial distributions were compared with gene expression-derived cell-type densities, histology-derived cytoarchitecture, and quantitative R1 maps acquired on a subset of participants. We then compared between-marker age-related trends in their shape, direction, and spatial distribution of the linear age effect. The gross anatomical distributions of cortical MRI markers were, in general, more related to myelin and glial cells than neuronal indicators. Comparing MRI markers, our results revealed generally high overlap in spatial distribution (i.e., group means), but mostly divergent age trajectories in the shape, direction, and spatial distribution of the linear age effect. We conclude that the microstructural properties at the source of spatial distributions of MRI cortical markers can be different from microstructural changes that affect these markers in aging.


Subject(s)
Myelin Sheath , White Matter , Humans , Myelin Sheath/physiology , Magnetic Resonance Imaging/methods , Gray Matter , Aging
2.
Nat Methods ; 19(11): 1472-1479, 2022 11.
Article in English | MEDLINE | ID: mdl-36203018

ABSTRACT

Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Comparing experimentally generated maps to these reference maps facilitates cross-disciplinary scientific discovery. Although recent data sharing initiatives increase the accessibility of brain maps, data are often shared in disparate coordinate systems, precluding systematic and accurate comparisons. Here we introduce neuromaps, a toolbox for accessing, transforming and analyzing structural and functional brain annotations. We implement functionalities for generating high-quality transformations between four standard coordinate systems. The toolbox includes curated reference maps and biological ontologies of the human brain, such as molecular, microstructural, electrophysiological, developmental and functional ontologies. Robust quantitative assessment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models. neuromaps combines open-access data with transparent functionality for standardizing and comparing brain maps, providing a systematic workflow for comprehensive structural and functional annotation enrichment analysis of the human brain.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/physiology
3.
Neuroimage ; 246: 118744, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34848302

ABSTRACT

The striatum is a major subcortical connection hub that has been heavily implicated in a wide array of motor and cognitive functions. Here, we developed a normative multimodal, data-driven microstructural parcellation of the striatum using non-negative matrix factorization (NMF) based on multiple magnetic resonance imaging-based metrics (mean diffusivity, fractional anisotropy, and the ratio between T1- and T2-weighted structural scans) from the Human Connectome Project Young Adult dataset (n = 329 unrelated participants, age range: 22-35, F/M: 185/144). We further explored the biological and functional relationships of this parcellation by relating our findings to motor and cognitive performance in tasks known to involve the striatum as well as demographics. We identified 5 spatially distinct striatal components for each hemisphere. We also show the gain in component stability when using multimodal versus unimodal metrics. Our findings suggest distinct microstructural patterns in the human striatum that are largely symmetric and that relate mostly to age and sex. Our work also highlights the putative functional relevance of these striatal components to different designations based on a Neurosynth meta-analysis.


Subject(s)
Corpus Striatum/anatomy & histology , Corpus Striatum/diagnostic imaging , Diffusion Tensor Imaging/methods , Adult , Connectome , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL