Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
JASA Express Lett ; 2(12): 125601, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36586967

ABSTRACT

Computing sound power using complex-valued surface velocities involves using a geometry-dependent acoustic radiation resistance matrix multiplied by a velocity vector to compute sound power for a given frequency range. Using a laser scan grid with constant spacing and a scalar radiator area approximation, a multi-layered Toeplitz symmetry exists in the radiation resistance matrix. An innovative approach was developed to exploit this Toeplitz symmetry. This approach preserved accuracy and resulted in a maximum of ∼1300% computation time reduction for curved plate calculations and a ∼9600% computation time reduction for cylindrical shell sound power calculations.

2.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293482

ABSTRACT

Therapeutic activation of mechanoreceptors (MStim) in osteopathy, chiropractic and acupuncture has been in use for hundreds of years with a myriad of positive outcomes. It has been previously shown to modulate the firing rate of neurons in the ventral tegmental area (VTA) and dopamine (DA) release in the nucleus accumbens (NAc), an area of interest in alcohol-use disorder (AUD). In this study, we examined the effects of MStim on VTA GABA neuron firing rate, DA release in the NAc, and behavior during withdrawal from chronic EtOH exposure in a rat model. We demonstrate that concurrent administration of MStim and EtOH significantly reduced adaptations in VTA GABA neurons and DA release in response to a reinstatement dose of EtOH (2.5 g/kg). Behavioral indices of EtOH withdrawal (rearing, open-field crosses, tail stiffness, gait, and anxiety) were substantively ameliorated with concurrent application of MStim. Additionally, MStim significantly increased the overall frequency of ultrasonic vocalizations, suggesting an increased positive affective state.


Subject(s)
Dopamine , Ventral Tegmental Area , Rats , Animals , Dopamine/pharmacology , GABAergic Neurons , Ethanol/pharmacology , Nucleus Accumbens
3.
J Acoust Soc Am ; 151(2): 1171, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35232106

ABSTRACT

Vibration-based sound power (VBSP) measurement methods are appealing because of their potential versatility in application compared to sound pressure and intensity-based methods. It has been understood that VBSP methods have been reliant on the acoustic radiation resistance matrix specific to the surface shape. Expressions for these matrices have been developed and presented in the literature for flat plates, simple-curved plates (constant radius of curvature in one direction), and cylindrical- and spherical-shells. This paper shows that the VBSP method is relatively insensitive to the exact form of the radiation resistance matrix and that computationally efficient forms of the radiation resistance matrix can be used to accurately approximate the sound power radiated from arbitrarily curved panels. Experimental sound power measurements using the VBSP method with the simple-curved plate radiation resistance matrix and the ISO 3741 standard method are compared for two arbitrarily curved panels and are shown to have good agreement. The VBSP method based on the simple-curved plate form of the radiation resistance matrix is also shown to have excellent agreement with numerical results from a boundary element model, which inherently uses the appropriate form of the radiation resistance matrix.

4.
Article in English | MEDLINE | ID: mdl-34360146

ABSTRACT

This study utilized resonant frequency vibration to the upper body to determine changes in pain, stiffness and isometric strength of the biceps brachii after eccentric damage. Thirty-one participants without recent resistance training were randomized into three groups: a Control (C) group and two eccentric exercise groups (No vibration (NV) and Vibration (V)). After muscle damage, participants in the V group received upper body vibration (UBV) therapy for 5 min on days 1-4. All participants completed a visual analog scale (VAS), maximum voluntary isometric contraction (MVIC), and shear wave elastography (SWE) of the bicep at baseline (pre-exercise), 24 h, 48 h, and 1-week post exercise. There was a significant difference between V and NV at 24 h for VAS (p = 0.0051), at 24 h and 1-week for MVIC (p = 0.0017 and p = 0.0016, respectively). There was a significant decrease in SWE for the V group from 24-48 h (p = 0.0003), while there was no significant change in the NV group (p = 0.9341). The use of UBV resonant vibration decreased MVIC decrement and reduced VAS pain ratings at 24 h post eccentric damage. SWE was strongly negatively correlated with MVIC and may function as a predictor of intrinsic muscle state in the time course of recovery of the biceps brachii.


Subject(s)
Elasticity Imaging Techniques , Myalgia , Exercise , Humans , Isometric Contraction , Muscle Strength , Muscle, Skeletal , Vibration
5.
Article in English | MEDLINE | ID: mdl-33950842

ABSTRACT

Insomnia affects millions of people worldwide, and non-pharmacological treatment options are limited. A bed excited with multiple vibration sources was used to explore beat frequency vibration (BFV) as a non-pharmacological treatment for insomnia. A repeated measures design pilot study of 14 participants with mild-moderate insomnia symptom severity (self-reported on the Insomnia Severity Index) was conducted to determine the effects of BFV, and traditional standing wave vibration (SWV) on sleep latency and sleep electrocortical activity. Participants were monitored using high-density electroencephalography (HD-EEG). Sleep latency was compared between treatment conditions. A trend of decreasing sleep latency due to BFV was found for unequivocal sleep latency (p ≤ 0.068). Neural complexity during wake, N1, and N2 stages were compared using Multi-Scale Sample Entropy (MSE), which demonstrated significantly lower MSE between wake and N2 stages (p ≤ 0.002). During N2 sleep, BFV showed lower MSE than the control session in the left frontoparietal region. As a measure of information integration, reduced entropy may indicate that BFV decreases conscious awareness during deeper stages of sleep. SWV caused reduced alpha activity and increased delta activity during wake. BFV caused increased delta activity during N2 sleep. These preliminary results suggest that BFV may help decrease sleep latency, reduce conscious awareness, and increase sleep drive expression during deeper stages of sleep. SWV may be beneficial for decreasing expression of arousal and increasing expression of sleep drive during wake, implying that beat frequency vibration may be beneficial to sleep.


Subject(s)
Sleep Initiation and Maintenance Disorders , Sleep Latency , Electroencephalography , Humans , Pilot Projects , Sleep , Sleep Stages , Vibration
6.
J Acoust Soc Am ; 148(6): 3553, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33379874

ABSTRACT

Research has shown that using acoustic radiation modes combined with surface velocity measurements provide an accurate method of measuring the radiated sound power from vibrating plates. This paper investigates the extension of this method to acoustically radiating cylindrical structures. The mathematical formulations of the radiation resistance matrix and the accompanying acoustic radiation modes of a baffled cylinder are developed. Computational sound power calculations using the vibration-based radiation mode (VBRM) method and the boundary element method are then compared and shown to have good agreement. Experimental surface velocity measurements of a cylinder are taken using a scanning laser Doppler vibrometer and the VBRM method is used to calculate sound power. The results are compared to sound power measurements taken using ISO 3741.

7.
Brain Stimul ; 13(2): 403-411, 2020.
Article in English | MEDLINE | ID: mdl-31866493

ABSTRACT

BACKGROUND: Growing evidence suggests that mechanical stimulation modulates substrates in the supraspinal central nervous system (CNS) outside the canonical somatosensory circuits. OBJECTIVE/METHODS: We evaluate mechanical stimulation applied to the cervical spine at the C7-T1 level (termed "MStim") on neurons and neurotransmitter release in the mesolimbic dopamine (DA) system, an area implicated in reward and motivation, utilizing electrophysiological, pharmacological, neurochemical and immunohistochemical techniques in Wistar rats. RESULTS: Low frequency (45-80 Hz), but not higher frequency (115 Hz), MStim inhibited the firing rate of ventral tegmental area (VTA) GABA neurons (52.8% baseline; 450 s) while increasing the firing rate of VTA DA neurons (248% baseline; 500 s). Inactivation of the nucleus accumbens (NAc), or systemic or in situ antagonism of delta opioid receptors (DORs), blocked MStim inhibition of VTA GABA neuron firing rate. MStim enhanced both basal (178.4% peak increase at 60 min) and evoked DA release in NAc (135.0% peak increase at 40 min), which was blocked by antagonism of DORs or acetylcholine release in the NAc. MStim enhanced c-FOS expression in the NAc, but inhibited total expression in the VTA, and induced translocation of DORs to neuronal membranes in the NAc. CONCLUSION: These findings demonstrate that MStim modulates neuron firing and DA release in the mesolimbic DA system through endogenous opioids and acetylcholine in the NAc. These findings demonstrate the need to explore more broadly the extra-somatosensory effects of peripheral mechanoreceptor activation and the specific role for mechanoreceptor-based therapies in the treatment of substance abuse.


Subject(s)
Cervical Vertebrae/physiology , Dopamine/metabolism , Nucleus Accumbens/metabolism , Ventral Tegmental Area/physiology , Animals , Cells, Cultured , Dopaminergic Neurons/metabolism , GABAergic Neurons/metabolism , Male , Nucleus Accumbens/physiology , Rats , Rats, Wistar , Synaptic Transmission , Ventral Tegmental Area/metabolism
8.
Int J Exerc Sci ; 12(3): 735-747, 2019.
Article in English | MEDLINE | ID: mdl-31156749

ABSTRACT

The effects of whole-body vibration (WBV) on flexibility and muscle stiffness are focused areas of research. Many studies have been performed over a large range of vibratory conditions and have reported varied results on effectiveness. When reviewing the published literature, it is difficult to track the vibration parameters that have positive effects and which have negative or no effects. In writing this paper, over 80 articles were evaluated, 24 of which met the inclusion requirements. The data gathered in the articles were used to develop charts that illustrate the vibration conditions that elicit helpful, harmful, and no effects on flexibility and muscle stiffness. A combination of published data shows that acceleration is the best metric to predict the effectiveness of WBV for improving flexibility and muscle stiffness. This review shows that acceleration in the range of 5g to 10g was most effective in increasing flexibility. Published data on muscle and tendon stiffness are limited, but shows that although WBV is generally significantly less effective in increasing stiffness than increasing flexibility, accelerations below 6.4g were the most effective.

9.
Dose Response ; 17(1): 1559325818825172, 2019.
Article in English | MEDLINE | ID: mdl-30728758

ABSTRACT

Very little is known about the effects of whole body vibration on the supraspinal central nervous system. Though much clinical outcome data and mechanistic data about peripheral neural and musculoskeletal mechanisms have been explored, the lack of central understanding is a barrier to evidence-based, best practice guidelines in the use of vibrational therapy. Disparate methods of administration render study to study comparisons difficult. To address this lack of uniformity, we present the use of targeted subcutaneous vibration combined with simultaneous in vivo electrophysiological recordings as a method of exploring the central effects of peripheral vibration therapy. We used implanted motors driven by both Grass stimulators and programmed microcontrollers to vary frequency and location of stimulation in an anesthetized in vivo rat model while simultaneously recording firing rate from gamma-aminobutyric acid (GABA) neurons in the ventral tegmental area. We show that peripheral vibration can alter GABA neuron firing rate in a location- and frequency-dependent manner. We include detailed schematics and code to aid others in the replication of this technique. This method allows for control of previous weaknesses in the literature including variability in body position, vibrational intensity, node and anti-node interactions with areas of differing mechanoreceptor densities, and prefrontal cortex influence.

10.
J Acoust Soc Am ; 143(1): 271, 2018 01.
Article in English | MEDLINE | ID: mdl-29390763

ABSTRACT

It is often desired to reduce sound radiated from cylindrical shells. Active structural acoustic control (ASAC) provides a means of controlling the structural vibration in a manner to efficiently reduce the radiated sound. Previous work has often required a large number of error sensors to reduce the radiated sound power, and the control performance has been sensitive to the location of error sensors. The ultimate objective is to provide global sound power reduction using a minimal number of local error measurements, while also minimizing any dependence on error sensor locations. Recently, a control metric referred to as weighted sum of spatial gradients (WSSG) was developed for ASAC. Specific features associated with WSSG make this method robust under a variety of conditions. In this work, the WSSG control metric is extended to curved structures, specifically a simply supported cylindrical shell. It is shown that global attenuation of the radiated sound power is possible using only one local error measurement. It is shown that the WSSG control metric provides a solution approximating the optimal solution of attenuating the radiated sound power, with minimal dependence on the error sensor location. Numerical and experimental results are presented to demonstrate the effectiveness of the method.

11.
J Acoust Soc Am ; 138(5): 2986-97, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26627772

ABSTRACT

Active structural acoustic control uses a control metric that when minimized reduces the radiated sound. Previous research has identified the weighted sum of spatial gradients (WSSG) control metric and has shown that it is effective in attenuating the radiated sound power from a plate. The WSSG control metric is computed using weighted measurements of the structural response from four closely spaced accelerometers. In this work, it is shown that the weights used to compute WSSG directly impact the control performance and further understanding into choosing appropriate weights is presented. Weights optimized for single frequencies are investigated and shown to achieve nearly the same performance as minimizing sound power. A set of parameter-based weights for broadband frequency control is also proposed and analyzed. These parameter-based weights are inversely proportional to the square of the flexural wavenumber and can be computed using the ratio of the flexural rigidity to the mass per unit area. Both numerical and experimental results are presented using parameter-based weights for simply supported and clamped plates. The results show that the WSSG control using parameter-based weights is easy to implement and works more effectively than previous methods.

12.
J Acoust Soc Am ; 136(5): 2598-608, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25373961

ABSTRACT

A limitation currently facing active structural acoustic control (ASAC) researchers is that an ideal minimization quantity for use in the control algorithms has not been developed. A novel parameter termed the "weighted sum of spatial gradients" (WSSG) was recently developed for use in ASAC and shown to effectively attenuate acoustic radiation from a vibrating flat simply supported plate in computer simulations. This paper extends this research from computer simulations and provides experimental test results. The results presented show that WSSG is a viable control quantity and provides better results than the volume velocity approach. The paper also investigates several of the challenges presented by the use of WSSG. These include determining a method to measure WSSG experimentally, an analysis of the influence of noise on WSSG control results and complications presented when degenerate modes exist. Results are shown and discussed for several experimental configurations.

13.
J Acoust Soc Am ; 135(5): 2797-807, 2014 May.
Article in English | MEDLINE | ID: mdl-24815262

ABSTRACT

Three multimicrophone probe arrangements used to measure acoustic intensity are the four-microphone regular tetrahedral, the four-microphone orthogonal, and the six-microphone designs. Finite-sum and finite-difference processing methods can be used with such probes to estimate pressure and particle velocity, respectively. A numerical analysis is performed to investigate the bias inherent in each combination of probe design and processing method. Probes consisting of matched point sensor microphones both embedded and not embedded on the surface of a rigid sphere are considered. Results are given for plane wave fields in terms of root-mean-square average bias and maximum bias as a function of angle of incidence. An experimental verification of the analysis model is described. Of the combinations considered and under the stated conditions, the orthogonal probe using the origin microphone for the pressure estimate is shown to have the lowest amount of intensity magnitude bias. Lowest intensity direction bias comes from the six-microphone probe using an average of the 15 intensity components calculated using all microphone pairs. Also discussed are how multimicrophone probes can advantageously use correction factors calculated from a numerical analysis and how the results of such an analysis depend on the chosen definition of the dimensionless frequency.


Subject(s)
Acoustics , Sound , Transducers, Pressure , Bias , Equipment Design , Models, Theoretical , Motion , Numerical Analysis, Computer-Assisted , Pressure , Signal Processing, Computer-Assisted
14.
J Acoust Soc Am ; 134(5): 3580-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24180769

ABSTRACT

Lumped-element models have long been used to estimate the basic vibration and radiation characteristics of moving-coil loudspeakers. The classical low-frequency model combines and simplifies several important driver elements, predicting only a single mechanical resonance wherein the diaphragm (e.g., cone and dust cap) and the inner portion of the surround move together as an effective piston. Even if the diaphragm maintains piston-like motion with increasing frequency, the flexible surround eventually vibrates out of phase, producing another resonance whereby a noticeable "surround dip" may occur in the radiated pressure spectrum. The classical model is unable to predict this behavior. This paper explores an extended lumped-element model that better characterizes the distinct diaphragm, surround, spider, and other properties of a loudspeaker in a plane rigid baffle. It extends effective modeling to mid frequencies and readily predicts a surround dip in the radiated response. The paper also introduces a method to estimate model parameters using a scanning laser Doppler vibrometer, a surround resonance indicator function, and a constrained optimization routine. The approach is validated by its ability to better predict on-axis pressure responses of several baffled loudspeakers in an anechoic environment.


Subject(s)
Acoustics/instrumentation , Amplifiers, Electronic , Models, Theoretical , Signal Processing, Computer-Assisted , Sound , Transducers, Pressure , Doppler Effect , Equipment Design , Lasers , Motion , Pressure , Reproducibility of Results , Sound Spectrography , Time Factors , Vibration
15.
J Acoust Soc Am ; 131(5): 3833-40, 2012 May.
Article in English | MEDLINE | ID: mdl-22559359

ABSTRACT

Active structural acoustic control has been an area of research and development for over two decades with an interest in searching for an "optimal" error quantity. Current error quantities typically require the use of either a large number of transducers distributed across the entire structure, or a distributed shaped sensor, such as polyvinylidene difluoride. The purpose of this paper is to investigate a control objective function for flat, simply-supported plates that is based on transverse and angular velocity components combined into a single composite structural velocity quantity, termed V(comp). Although multiple transducers are used, they are concentrated at a single location to eliminate the need for transducers spanning most or all of the structure. When used as the objective function in an active control situation, squared V(comp) attenuates the acoustic radiation over a large range of frequencies. The control of squared V(comp) is compared to other objective functions including squared velocity, volume velocity, and acoustic energy density. The analysis presented indicates that benefits of this objective function include control of radiation from numerous structural modes, control largely independent of sensor location, and need to measure V(comp) at a single location and not distributed measurements across the entire structure.

16.
J Acoust Soc Am ; 131(4): 2841-52, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22501062

ABSTRACT

One design for three-dimensional multimicrophone probes is the four-microphone orthogonal design consisting of one microphone at an origin position with the other three microphones equally spaced along the three coordinate axes. Several distinct processing methods have been suggested for the estimation of active acoustic intensity with the orthogonal probe; however, the relative merits of each method have not been thoroughly studied. This comparative study is an investigation of the errors associated with each method. Considered are orthogonal probes consisting of matched point sensor microphones both freely suspended and embedded on the surface of a rigid sphere. Results are given for propagating plane-wave fields for all angles of incidence. It is shown that the lowest error for intensity magnitude results from having the microphones in a sphere and using just one microphone for the pressure estimate. For intensity direction, the lowest error results from having the microphones in a sphere and using Taylor approximations to estimate the particle velocity and pressure.

17.
J Acoust Soc Am ; 128(5): 2807-16, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21110576

ABSTRACT

Low-frequency sound transmission through passive lightweight partitions often renders them ineffective as means of sound isolation. As a result, researchers have investigated actively controlled lightweight partitions in an effort to remedy this problem. One promising approach involves active segmented partitions (ASPs), in which partitions are segmented into several distinctly controlled modules. This paper provides an experimental analysis of a double-panel ASP module wherein the source- and transmitting-side panels are independently controlled by an analog feedback controller. Experimental results, including plant frequency response functions, acoustic coupling strengths, frequency response functions, and transmission losses (TLs) of single- and double-panel modules, are presented and compared to numerical predictions. Over the bandwidth of 20 Hz to 1 kHz, the average measured TL for an actively controlled single-panel module was 29 dB, compared to 14 dB for the passive case. The average measured TL over the same bandwidth for the actively controlled double-panel module was 57 dB, compared to 31 dB for the passive case.


Subject(s)
Acoustics/instrumentation , Amplifiers, Electronic , Computers, Analog , Noise/prevention & control , Transducers , Feedback
18.
J Acoust Soc Am ; 128(2): EL69-74, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20707417

ABSTRACT

Near-field vector intensity measurements have been made of a 12.7-cm diameter nozzle solid rocket motor. The measurements utilized a test rig comprised of four probes each with four low-sensitivity 6.35-mm pressure microphones in a tetrahedral arrangement. Measurements were made with the rig at nine positions (36 probe locations) within six nozzle diameters of the plume shear layer. Overall levels at these locations range from 135 to 157 dB re 20 microPa. Vector intensity maps reveal that, as frequency increases, the dominant source region contracts and moves upstream with peak directivity at greater angles from the plume axis.


Subject(s)
Acoustics , Aircraft , Noise, Transportation , Petroleum , Acoustics/instrumentation , Amplifiers, Electronic , Equipment Design , Models, Theoretical , Pressure
19.
J Acoust Soc Am ; 125(6): 3806-18, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19507963

ABSTRACT

Low-frequency sound transmission has long plagued the sound isolation performance of lightweight partitions. Over the past 2 decades, researchers have investigated actively controlled structures to prevent sound transmission from a source space into a receiving space. An approach using active segmented partitions (ASPs) seeks to improve low-frequency sound isolation capabilities. An ASP is a partition which has been mechanically and acoustically segmented into a number of small individually controlled modules. This paper provides a theoretical and numerical development of a single ASP module configuration, wherein each panel of the double-panel structure is independently actuated and controlled by an analog feedback controller. A numerical model is developed to estimate frequency response functions for the purpose of controller design, to understand the effects of acoustic coupling between the panels, to predict the transmission loss of the module in both passive and active states, and to demonstrate that the proposed ASP module will produce bidirectional sound isolation.

20.
J Acoust Soc Am ; 123(6): 4238-49, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18537375

ABSTRACT

The FXLMS algorithm, which is extensively used in active noise control, exhibits frequency dependent convergence behavior. This leads to degraded performance for time-varying and multiple frequency signals. A new algorithm called the eigenvalue equalization filtered-x least mean squares (EE-FXLMS) has been developed to overcome this limitation without increasing the computational burden of the controller. The algorithm is easily implemented for either single or multichannel control. The magnitude coefficients of the secondary path transfer function estimate are altered while preserving the phase. For a reference signal that has the same magnitude at all frequencies, the secondary path estimate is given a flat response over frequency. For a reference signal that contains tonal components of unequal magnitudes, the magnitude coefficients of the secondary path are adjusted to be the inverse magnitude of the reference tones. Both modifications reduce the variation in the eigenvalues of the filtered-x autocorrelation matrix and lead to increased performance. Experimental results show that the EE-FXLMS algorithm provides 3.5-4.4 dB additional attenuation at the error sensor compared to normal FXLMS control. The EE-FXLMS algorithm's convergence rate at individual frequencies is faster and more uniform than the normal FXLMS algorithm with several second improvement being seen in some cases.


Subject(s)
Noise/prevention & control , Acoustics , Algorithms , Artifacts , Humans , Image Enhancement , Image Interpretation, Computer-Assisted , Mathematics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...