Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 4495, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402260

ABSTRACT

Extrapulmonary tuberculosis with a renal involvement can be a manifestation of a disseminated infection that requires therapeutic intervention, particularly with a decrease in efficacy of conventional regimens. In the present study, we investigated the therapeutic potency of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in the complex anti-tuberculosis treatment (ATT). A rabbit model of renal tuberculosis (rTB) was constructed by injecting of the standard strain Mycobacterium tuberculosis H37Rv into the cortical layer of the kidney parenchyma. Isolated rabbit MSC-EVs were intravenously administered once as an addition to standard ATT (isoniazid, pyrazinamide, and ethambutol). The therapeutic efficacy was assessed by analyzing changes of blood biochemical biomarkers and levels of anti- and pro-inflammatory cytokines as well as by renal computed tomography with subsequent histological and morphometric examination. The therapeutic effect of therapy with MSC-EVs was shown by ELISA method that confirmed a statistically significant increase of the anti-inflammatory and decrease of pro-inflammatory cytokines as compared to conventional treatment. In addition, there is a positive trend in increase of ALP level, animal weigh, and normalization of ADA activity that can indicate an improvement of kidney state. A significant reduction of the area of specific and interstitial inflammation indicated positive affect of MSC-EVs that suggests a shorter duration of ATT. The number of MSC-EVs proteins (as identified by mass-spectometry analysis) with anti-microbial, anti-inflammatory and immunoregulatory functions reduced the level of the inflammatory response and the severity of kidney damage (further proved by morphometric analysis). In conclusion, MSC-EVs can be a promising tool for the complex treatment of various infectious diseases, in particularly rTB.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Tuberculosis, Renal , Animals , Rabbits , Tuberculosis, Renal/metabolism , Extracellular Vesicles/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Mesenchymal Stem Cells/metabolism
2.
Biomedicines ; 11(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37626725

ABSTRACT

Tuberculosis remains one of the major health problems worldwide. Besides the lungs, tuberculosis affects other organs, including bones and joints. In the case of bone tuberculosis, current treatment protocols include necrectomy in combination with conventional anti-tuberculosis therapy, followed by reconstruction of the resulting bone defects. In this study, we compared autografting and implantation with a biodegradable composite scaffold for bone-defect regeneration in a tuberculosis rabbit model. Porous three-dimensional composite materials were prepared by 3D printing and consisted of poly(ε-caprolactone) filled with nanocrystalline cellulose modified with poly(glutamic acid). In addition, rabbit mesenchymal stem cells were adhered to the surface of the composite scaffolds. The developed tuberculosis model was verified by immunological subcutaneous test, real-time polymerase chain reaction, biochemical markers and histomorphological study. Infected animals were randomly divided into three groups, representing the infection control and two experimental groups subjected to necrectomy, anti-tuberculosis treatment, and plastic surgery using autografts or 3D-composite scaffolds. The lifetime observation of the experimental animals and analysis of various biochemical markers at different time periods allowed the comparison of the state of the animals between the groups. Micro-computed tomography and histomorphological analysis enabled the evaluation of osteogenesis, inflammation and cellular changes between the groups, respectively.

3.
J Biomed Mater Res B Appl Biomater ; 110(11): 2422-2437, 2022 11.
Article in English | MEDLINE | ID: mdl-35618683

ABSTRACT

The manufacturing of modern scaffolds with customized geometry and personalization has become possible due to the three-dimensional (3D) printing technique. A novel type of 3D-printed scaffolds for bone tissue regeneration based on poly(ε-caprolactone) (PCL) filled with nanocrystalline cellulose modified by poly(glutamic acid) (PGlu-NCC) has been proposed in this study. The 3D printing set-ups were optimized in order to obtain homogeneous porous scaffolds. Both polymer composites and manufactured 3D scaffolds have demonstrated mechanical properties suitable for a human trabecular bone. Compression moduli were in the range of 334-396 MPa for non-porous PCL and PCL-based composites, and 101-122 MPa for porous scaffolds made of the same materials. In vitro mineralization study with the use of human mesenchymal stem cells (hMSCs) revealed the larger Ca deposits on the surface of PCL/PGlu-NCC composite scaffolds. Implantation of the developed 3D scaffolds into femur of the rabbits was carried out to observe close and delayed effects. The histological analysis showed the lowest content of immune cells and thin fibrous capsule, revealing low toxicity of the PCL/PGlu-NCC scaffolds seeded with rabbit MSCs (rMSCs) to the surrounding tissues. The most pronounced result on the generation of new bone tissue after implantation of PCL/PGlu-NCC + rMSCs scaffolds was detected by both microcomputed tomography and histological analysis. Around 33% and 55% of bone coverage were detected for composite 3D scaffolds with adhered rMSCs after 1 and 3 months of implantation, respectively. This achievement can be a result of synergistic effect of PGlu, which attracts calcium ions, and stem cells with osteogenic potential.


Subject(s)
Nanoparticles , Tissue Scaffolds , Animals , Bone Regeneration , Bone and Bones , Calcium , Caproates , Cellulose/pharmacology , Glutamic Acid , Humans , Lactones , Polyesters/chemistry , Polyesters/pharmacology , Printing, Three-Dimensional , Rabbits , Tissue Engineering/methods , Tissue Scaffolds/chemistry , X-Ray Microtomography
4.
Materials (Basel) ; 12(20)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640122

ABSTRACT

The development of biocompatible composite materials is in high demand in many fields such as biomedicine, bioengineering, and biotechnology. In this study, two series of poly (D,L-lactide) and poly (ε-caprolactone)-based films filled with neat and modified with poly (glutamic acid) (PGlu) nanocrystalline cellulose (NCC) were prepared. An analysis of scanning electron and atomic force microscopies' results shows that the modification of NCC with poly (glutamic acid) favored the better distribution of the nanofiller in the polymer matrix. Investigating the ability of the developed materials to attract and retain calcium ions led to the conclusion that composites containing NCC modified with PGlu induced better mineralization from model solutions than composites containing neat NCC. Moreover, compared to unmodified NCC, functionalization with PGlu improved the mechanical properties of composite films. The subcutaneous implantation of these composite materials into the backs of rats and the further histological investigation of neighboring tissues revealed the better biocompatibility of polyester materials filled with NCC-PGlu.

SELECTION OF CITATIONS
SEARCH DETAIL
...