Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Commun Biol ; 7(1): 933, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095612

ABSTRACT

Desensitisation of the mu-opioid receptor (MOR) is proposed to underlie the initiation of opioid analgesic tolerance and previous work has shown that agonist-induced phosphorylation of the MOR C-tail contributes to this desensitisation. Moreover, phosphorylation is important for ß-arrestin recruitment to the receptor, and ligands of different efficacies induce distinct phosphorylation barcodes. The C-tail 370TREHPSTANT379 motif harbours Ser/Thr residues important for these regulatory functions. 375Ser is the primary phosphorylation site of a ligand-dependent, hierarchical, and sequential process, whereby flanking 370Thr, 376Thr and 379Thr get subsequently and rapidly phosphorylated. Here we used GRK KO cells, phosphosite specific antibodies and site-directed mutagenesis to evaluate the contribution of the different GRK subfamilies to ligand-induced phosphorylation barcodes and ß-arrestin2 recruitment. We show that both GRK2/3 and GRK5/6 subfamilies promote phosphorylation of 370Thr and 375Ser. Importantly, only GRK2/3 induce phosphorylation of 376Thr and 379Thr, and we identify these residues as key sites to promote robust ß-arrestin recruitment to the MOR. These data provide insight into the mechanisms of MOR regulation and suggest that the cellular complement of GRK subfamilies plays an important role in determining the tissue responses of opioid agonists.


Subject(s)
Receptors, Opioid, mu , beta-Arrestin 2 , Phosphorylation , beta-Arrestin 2/metabolism , beta-Arrestin 2/genetics , Humans , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/genetics , HEK293 Cells , Protein Binding , Animals , G-Protein-Coupled Receptor Kinases/metabolism , G-Protein-Coupled Receptor Kinases/genetics
3.
Front Mol Neurosci ; 16: 1171855, 2023.
Article in English | MEDLINE | ID: mdl-37251645

ABSTRACT

N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide is a newly-designed pain killer selectively activating G-protein-coupled mu-opioid receptors (MOR) in acidic injured tissues, and therefore devoid of central side effects which are typically elicited at normal pH values in healthy tissues. However, the neuronal mechanisms underlying NFEPP's antinociceptive effects were not examined in detail so far. Voltage-dependent Ca2+ channels (VDCCs) in nociceptive neurons play a major role in the generation and inhibition of pain. In this study, we focused on the effects of NFEPP on calcium currents in rat dorsal root ganglion (DRG) neurons. The inhibitory role of the G-protein subunits Gi/o and Gßγ on VDCCs was investigated using the blockers pertussis toxin and gallein, respectively. GTPγS binding, calcium signals and MOR phosphorylation were also investigated. All experiments were performed at acidic and normal pH values using NFEPP in comparison to the conventional opioid agonist fentanyl. At low pH, NFEPP produced more efficient G-protein activation in transfected HEK293 cells and significantly reduced VDCCs in depolarized DRG neurons. The latter effect was mediated by Gßγ subunits, and NFEPP-mediated MOR phosphorylation was pH-dependent. Fentanyl's responses were not affected by pH changes. Our data indicate that NFEPP-induced MOR signaling is more effective at low pH and that the inhibition of calcium channels in DRG neurons underlies NFEPP's antinociceptive actions.

4.
Commun Biol ; 5(1): 1206, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352263

ABSTRACT

Analysis of agonist-driven phosphorylation of G protein-coupled receptors (GPCRs) can provide valuable insights into the receptor activation state and ligand pharmacology. However, to date, assessment of GPCR phosphorylation using high-throughput applications has been challenging. We have developed and validated a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in multiwell cell culture plates. The assay involves immunoprecipitation of affinity-tagged receptors using magnetic beads followed by protein detection using phosphorylation state-specific and phosphorylation state-independent anti-GPCR antibodies. As proof of concept, five prototypical GPCRs (MOP, C5a1, D1, SST2, CB2) were treated with different agonizts and antagonists, and concentration-response curves were generated. We then extended our approach to establish selective cellular GPCR kinase (GRK) inhibitor assays, which led to the rapid identification of a selective GRK5/6 inhibitor (LDC8988) and a highly potent pan-GRK inhibitor (LDC9728). In conclusion, this versatile GPCR phosphorylation assay can be used extensively for ligand profiling and inhibitor screening.


Subject(s)
Receptors, G-Protein-Coupled , Phosphorylation , Ligands , Receptors, G-Protein-Coupled/metabolism , Immunoassay
SELECTION OF CITATIONS
SEARCH DETAIL