Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Med Sci Sports Exerc ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38587921

ABSTRACT

PURPOSE: To investigate the effects of a 7-day high-intensity interval training shock microcycle (HIIT-SM) with or without additional low-intensity training (LIT) on aerobic fitness and endurance performance compared to a control group. METHODS: Thirty-three endurance-trained athletes (7 women, 26 men, mean ± SD: age, 30.2 ± 6.9 yr; maximal oxygen uptake (V̇O 2max ), 59.8 ± 4.9 mL·min -1 ·kg -1 ) performed exercise testing at T1 and were randomly assigned to one of three groups: i) HSM: 10 running-based HIIT sessions (5 x 4 min at 90-95% maximal heart rate) over 7 days ii) HSM + LIT: equal to HSM with additional 30-min of LIT after each HIIT iii) CG: regular training. Exercise testing was repeated 3 days (T2), 7 days (T3), and 14 days (T4) after the intervention. A 5-km time trial (TT 5km ) was performed 3-4 days before T1 and 10-11 days after the intervention. Data was analyzed by two-way repeated-measures ANOVA. RESULTS: No interaction effect was found for V̇O 2max (P = 0.170, p η 2 = 0.09), peak power output (P = 0.734, p η 2 = 0.04), and work economy (P = 0.804, p η 2 = 0.03). There was an interaction for velocity at lactate threshold (P = 0.006, p η 2 = 0.18) with increased velocity in HSM at T2 (3.2%, P = 0.030), T3 (4%, P = 0.006), T4 (4%, P = 0.003), as well as in HSM + LIT for T2 (3.2%, P = 0.011), while CG showed no change. There was an interaction for TT 5km (P = 0.044, p η 2 = 0.19) with HSM improving 2.7% (P = 0.003), HSM + LIT 2.3% (P = 0.010), while CG was on average - 0.3% (P = 0.821) slower. CONCLUSIONS: HIIT-SM with or without additional LIT has negligible effects on V̇O 2max but improves other key endurance variables in endurance-trained athletes. No superiority of either intervention group was demonstrated. Therefore, additional LIT during HIIT-SM is not beneficial.

2.
J Sports Sci Med ; 22(3): 476-487, 2023 09.
Article in English | MEDLINE | ID: mdl-37711721

ABSTRACT

The search for monitoring tools that provide early indication of injury and illness could contribute to better player protection. The aim of the present study was to i) determine the feasibility of and adherence to our monitoring approach, and ii) identify variables associated with up-coming illness and injury. We incorporated a comprehensive set of monitoring tools consisting of external load and physical fitness data, questionnaires, blood, neuromuscular-, hamstring, hip abductor and hip adductor performance tests performed over a three-month period in elite under-18 academy soccer players. Twenty-five players (age: 16.6 ± 0.9 years, height: 178 ± 7 cm, weight: 74 ± 7 kg, VO2max: 59 ± 4 ml/min/kg) took part in the study. In addition to evaluating adherence to the monitoring approach, data were analyzed using a linear support vector machine (SVM) to predict illness and injuries. The approach was feasible, with no injuries or dropouts due to the monitoring process. Questionnaire adherence was high at the beginning and decreased steadily towards the end of the study. An SVM resulted in the best classification results for three classification tasks, i.e., illness prediction, illness determination and injury prediction. For injury prediction, one of four injuries present in the test data set was detected, with 96.3% of all data points (i.e., injuries and non-injuries) correctly detected. For both illness prediction and determination, there was only one illness in the test data set that was detected by the linear SVM. However, the model showed low precision for injury and illness prediction with a considerable number of false-positives. The results demonstrate the feasibility of a holistic monitoring approach with the possibility of predicting illness and injury. Additional data points are needed to improve the prediction models. In practical application, this may lead to overcautious recommendations on when players should be protected from injury and illness.


Subject(s)
Hamstring Muscles , Soccer , Humans , Adolescent , Machine Learning , Physical Fitness
3.
Front Physiol ; 13: 1000898, 2022.
Article in English | MEDLINE | ID: mdl-36262260

ABSTRACT

Load management, i.e., prescribing, monitoring, and adjusting training load, is primarily aimed at preventing injury and maximizing performance. The search for objective monitoring tools to assess the external and internal load of athletes is of great interest for sports science research. In this 4-week pilot study, we assessed the feasibility and acceptance of an extensive monitoring approach using biomarkers, neuromuscular performance, and questionnaires in an elite youth soccer setting. Eight male players (mean ± SD: age: 17.0 ± 0.6 years, weight: 69.6 ± 8.2 kg, height: 177 ± 7 cm, VO2max: 62.2 ± 3.8 ml/min/kg) were monitored with a local positioning system (e.g., distance covered, sprints), biomarkers (cell-free DNA, creatine kinase), questionnaires, neuromuscular performance testing (counter-movement jump) and further strength testing (Nordic hamstring exercise, hip abduction and adduction). Feasibility was high with no substantial impact on the training routine and no adverse events such as injuries during monitoring. Adherence to the performance tests was high, but adherence to the daily questionnaires was low, and decreased across the study period. Occasional significant correlations were observed between questionnaire scores and training load data, as well as between questionnaire scores and neuromuscular performance. However, due to the small sample size, these findings should be treated with caution. These preliminary results highlight the feasibility of the approach in elite soccer, but also indicate that modifications are needed in further large-scale studies, particularly in relation to the length of the questionnaire.

5.
BMC Sports Sci Med Rehabil ; 14(1): 84, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35526065

ABSTRACT

BACKGROUND: Performing multiple high-intensity interval training (HIIT) sessions in a compressed period of time (approximately 7-14 days) is called a HIIT shock microcycle (SM) and promises a rapid increase in endurance performance. However, the efficacy of HIIT-SM, as well as knowledge about optimal training volumes during a SM in the endurance-trained population have not been adequately investigated. This study aims to examine the effects of two different types of HIIT-SM (with or without additional low-intensity training (LIT)) compared to a control group (CG) on key endurance performance variables. Moreover, participants are closely monitored for stress, fatigue, recovery, and sleep before, during and after the intervention using innovative biomarkers, questionnaires, and wearable devices. METHODS: This is a study protocol of a randomized controlled trial that includes the results of a pilot participant. Thirty-six endurance trained athletes will be recruited and randomly assigned to either a HIIT-SM (HSM) group, HIIT-SM with additional LIT (HSM + LIT) group or a CG. All participants will be monitored before (9 days), during (7 days), and after (14 days) a 7-day intervention, for a total of 30 days. Participants in both intervention groups will complete 10 HIIT sessions over 7 consecutive days, with an additional 30 min of LIT in the HSM + LIT group. HIIT sessions consist of aerobic HIIT, i.e., 5 × 4 min at 90-95% of maximal heart rate interspersed by recovery periods of 2.5 min. To determine the effects of the intervention, physiological exercise testing, and a 5 km time trial will be conducted before and after the intervention. RESULTS: The feasibility study indicates good adherence and performance improvement of the pilot participant. Load monitoring tools, i.e., biomarkers and questionnaires showed increased values during the intervention period, indicating sensitive variables. CONCLUSION: This study will be the first to examine the effects of different total training volumes of HIIT-SM, especially the combination of LIT and HIIT in the HSM + LIT group. In addition, different assessments to monitor the athletes' load during such an exhaustive training period will allow the identification of load monitoring tools such as innovative biomarkers, questionnaires, and wearable technology. TRIAL REGISTRATION: clinicaltrials.gov, NCT05067426. Registered 05 October 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05067426 . Protocol Version Issue date: 1 Dec 2021. Original protocol. Authors: TLS, NH.

6.
Eur J Appl Physiol ; 122(7): 1709-1722, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35475921

ABSTRACT

PURPOSE: To identify the effects of a single 30 min partial lower leg external pneumatic compression (EPC) treatment compared to a static compression (SC) garment or a no treatment control (CTL) on markers of recovery and performance following a muscle damaging protocol. METHODS: Thirty healthy, active males (23 ± 3 years; 180.2 ± 9.0 cm; 81.6 ± 11.3 kg) performed 100 drop jumps from a 0.6 m box followed by a randomized, single 30 min treatment of either a partial lower leg EPC device worn below the knee and above the ankle (110 mmHg), SC garment (20-30 mmHg) covering the foot and calf just below the knee, or no treatment CTL, and then returned 24 and 48 h later. Participants were assessed for measures of muscle soreness, fatigue, hemodynamics, blood lactate, muscle thickness, circumferences, and performance assessments. RESULTS: The drop jump protocol significantly increased muscle soreness (p < 0.001), fatigue (p < 0.001), blood flow (p < 0.001), hemoglobin (p < 0.001), and muscle oxygen saturation (SMO2; p < 0.001). Countermovement jump and squat jump testing completed after treatment with either EPC, SC, or CTL revealed no differences for jump height between any condition. However, EPC treatment maintained consistent braking force and propulsive power measures across all timepoints for countermovement jump testing. EPC and SC treatment also led to better maintenance of squat jump performance for average relative propulsive force and power variables at 24 and 48 h compared to CTL. CONCLUSIONS: A single 30 min partial leg EPC treatment may lead to more consistent jump performance following a damaging bout of exercise.


Subject(s)
Athletic Performance , Myalgia , Clothing , Exercise/physiology , Fatigue , Humans , Male , Muscle, Skeletal/physiology
7.
Sports (Basel) ; 9(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918193

ABSTRACT

Energy needs of female team-sport athletes are poorly understood with no evidence highlighting differences present between scheduled activities. The purpose of this study was to examine the difference in energy expenditure between NCAA Division II female basketball (BBALL) and lacrosse (LAX) athletes during different scheduled team activities. Female BBALL (n = 13; 19.8 ± 1.3 yrs; 173.9 ± 13.6 cm; 74.6 ± 9.1kg; 27.1 ± 3.2%fat) and LAX (n = 20; 20.4 ± 1.8yrs; 168.4 ± 6.6cm; 68.8 ± 8.9kg; 27.9 ± 3.1%fat) athletes were outfitted with heart rate and activity monitors during four consecutive days on five different occasions (20 days total) across an entire academic year to assess differences in total daily activity energy expenditure (TDEE), activity energy expenditure (AEE), and physical activity level (PAL). Data were categorized by type of scheduled daily activities: Practice, Game, Conditioning, or Off. Independent of day type, TDEE, AEE, and PAL levels were greater (p < 0.05) in BBALL athletes. For each sport, TDEE, AEE, and PAL were significantly different (p < 0.05) between classified activity days. BBALL and LAX athletes experienced higher values on game days for TDEE, AEE, and PAL, with the lowest values experienced on off days. In conclusion, calculated levels of TDEE, AEE, and PAL in female collegiate BBALL and LAX athletes were determined to be different, irrespective of the scheduled activity.

8.
J Int Soc Sports Nutr ; 17(1): 60, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33261645

ABSTRACT

BACKGROUND: Large (48-g), isonitrogenous doses of rice and whey protein have previously been shown to stimulate similar adaptations to resistance training, but the impact of consuming smaller doses has yet to be compared. We evaluated the ability of 24-g doses of rice or whey protein concentrate to augment adaptations following 8 weeks of resistance training. METHODS: Healthy resistance-trained males (n = 24, 32.8 ± 6.7 years, 179.3 ± 8.5 cm, 87.4 ± 8.5 kg, 27.2 ± 1.9 kg/m2, 27.8 ± 6.0% fat) were randomly assigned and matched according to fat-free mass to consume 24-g doses of rice (n = 12, Growing Naturals, LLC) or whey (n = 12, NutraBio Labs, Inc.) protein concentrate for 8 weeks while completing a standardized resistance training program. Body composition (DXA), muscular strength (one-repetition maximum [1RM]) and endurance (repetitions to fatigue [RTF] at 80% 1RM) using bench press (BP) and leg press (LP) exercises along with anaerobic capacity (Wingate) were assessed before and after the intervention. Subjects were asked to maintain regular dietary habits and record dietary intake every 2 weeks. Outcomes were assessed using 2 × 2 mixed (group x time) factorial ANOVA with repeated measures on time and independent samples t-tests using the change scores from baseline. A p-value of 0.05 and 95% confidence intervals on the changes between groups were used to determine outcomes. RESULTS: No baseline differences (p > 0.05) were found for key body composition and performance outcomes. No changes (p > 0.05) in dietary status occurred within or between groups (34 ± 4 kcal/kg/day, 3.7 ± 0.77 g/kg/day, 1.31 ± 0.28 g/kg/day, 1.87 ± 0.23 g/kg/day) throughout the study for daily relative energy (34 ± 4 kcals/kg/day), carbohydrate (3.7 ± 0.77 g/kg/day), fat (1.31 ± 0.28 g/kg/day), and protein (1.87 ± 0.23 g/kg/day) intake. Significant main effects for time were revealed for body mass (p = 0.02), total body water (p = 0.01), lean mass (p = 0.008), fat-free mass (p = 0.007), BP 1RM (p = 0.02), BP volume (p = 0.04), and LP 1RM (p = 0.01). Changes between groups were similar for body mass (- 0.88, 2.03 kg, p = 0.42), fat-free mass (- 0.68, 1.99 kg, p = 0.32), lean mass (- 0.73, 1.91 kg, p = 0.37), fat mass (- 0.48, 1.02 kg, p = 0.46), and % fat (- 0.63, 0.71%, p = 0.90). No significant between group differences were seen for BP 1RM (- 13.8, 7.1 kg, p = 0.51), LP 1RM (- 38.8, 49.6 kg, p = 0.80), BP RTF (- 2.02, 0.35 reps, p = 0.16), LP RTF (- 1.7, 3.3 reps, p = 0.50), and Wingate peak power (- 72.5, 53.4 watts, p = 0.76) following the eight-week supplementation period. CONCLUSIONS: Eight weeks of daily isonitrogenous 24-g doses of rice or whey protein in combination with an eight-week resistance training program led to similar changes in body composition and performance outcomes. Retroactively registered on as NCT04411173 .


Subject(s)
Body Composition , Oryza/chemistry , Plant Proteins, Dietary/pharmacology , Resistance Training/methods , Whey Proteins/pharmacology , Adult , Anaerobiosis , Body Composition/drug effects , Body Composition/physiology , Body Water , Energy Intake , Humans , Male , Muscle Strength/physiology , Physical Functional Performance , Plant Proteins, Dietary/administration & dosage , Plant Proteins, Dietary/chemistry , Sports Nutritional Physiological Phenomena , Whey Proteins/administration & dosage , Whey Proteins/chemistry
9.
Nutrients ; 12(4)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325856

ABSTRACT

Aerobic exercise and thermal stress instigate robust challenges to the immune system. Various attempts to modify or supplement the diet have been proposed to bolster the immune system responses. The purpose of this study was to identify the impact of yeast beta-glucan (Saccharomyces cerevisiae) supplementation on exercise-induced muscle damage and inflammation. Healthy, active men (29.6 ± 6.7 years, 178.1 ± 7.2 cm, 83.2 ± 11.2 kg, 49.6 ± 5.1 mL/kg/min, n = 16) and women (30.1 ± 8.9 years, 165.6 ± 4.1 cm, 66.7 ± 10.0 kg, 38.7 ± 5.8 mL/kg/min, n = 15) were randomly assigned in a double-blind and cross-over fashion to supplement for 13 days with either 250 mg/day of yeast beta-glucan (YBG) or a maltodextrin placebo (PLA). Participants arrived fasted and completed a bout of treadmill exercise at 55% peak aerobic capacity (VO2Peak) in a hot (37.2 ± 1.8 °C) and humid (45.2 ± 8.8%) environment. Prior to and 0, 2, and 72 h after completing exercise, changes in white blood cell counts, pro- and anti-inflammatory cytokines, markers of muscle damage, markers of muscle function, soreness, and profile of mood states (POMS) were assessed. In response to exercise and heat, both groups experienced significant increases in white blood cell counts, plasma creatine kinase and myoglobin, and soreness along with reductions in peak torque and total work with no between-group differences. Concentrations of serum pro-inflammatory cytokines in YBG were lower than PLA for macrophage inflammatory protein 1ß (MIP-1ß) (p = 0.044) and tended to be lower for interleukin 8 (IL-8) (p = 0.079), monocyte chemoattractment protein 1 (MCP-1) (p = 0.095), and tumor necrosis factor α (TNF-α) (p = 0.085). Paired samples t-tests using delta values between baseline and 72 h post-exercise revealed significant differences between groups for IL-8 (p = 0.044, 95% Confidence Interval (CI): (0.013, 0.938, d = -0.34), MCP-1 (p = 0.038, 95% CI: 0.087, 2.942, d = -0.33), and MIP-1ß (p = 0.010, 95% CI: 0.13, 0.85, d = -0.33). POMS outcomes changed across time with anger scores in PLA exhibiting a sharper decline than YBG (p = 0.04). Vigor scores (p = 0.04) in YBG remained stable while scores in PLA were significantly reduced 72 h after exercise. In conclusion, a 13-day prophylactic period of supplementation with 250 mg of yeast-derived beta-glucans invoked favorable changes in cytokine markers of inflammation after completing a prolonged bout of heated treadmill exercise.


Subject(s)
Dietary Supplements , Down-Regulation/drug effects , Exercise Test , Exercise/physiology , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Inflammation/genetics , Inflammation/metabolism , Nutritional Physiological Phenomena/physiology , Saccharomyces cerevisiae/chemistry , beta-Glucans/administration & dosage , beta-Glucans/pharmacology , Adult , Chemokine CCL2/metabolism , Chemokine CCL4/metabolism , Cross-Over Studies , Double-Blind Method , Female , Humans , Inflammation Mediators/metabolism , Leukocyte Count , Male , Muscle Fatigue/drug effects , Muscle Fatigue/genetics , Tumor Necrosis Factor-alpha/metabolism , Young Adult , beta-Glucans/isolation & purification
10.
J Strength Cond Res ; 33(3): 597-605, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30640305

ABSTRACT

Fahs, CA, Blumkaitis, JC, and Rossow, LM. Factors related to average concentric velocity of four barbell exercises at various loads. J Strength Cond Res 33(3): 597-605, 2019-The resistance exercise load is the primarily determinant of the average concentric velocity (ACV) during a repetition. It is unknown whether individual factors such as training experience or anthropometrics also influence the ACV. Previous research has shown the ACV during the 1 repetition maximum (1RM) varies between exercises, but it is not clear whether ACV is different between exercises at various percentages of the 1RM. This information could provide practical guidelines for trainees using ACV to select training loads. Therefore, the purpose of this study was to determine whether training age, current training frequency, limb length, height, and relative strength are related to ACV at loads between 35 and 100% of the 1RM for the squat, bench press, deadlift, and overhead press. A secondary purpose was to compare the ACV values between the 4 lifts at each relative load. Fifty-one (18 women and 33 men) completed 2 testing sessions in which the squat, bench press, deadlift, and overhead press ACV were measured during a modified 1RM protocol. Average concentric velocity values were significantly different among the 4 lifts (p < 0.05) at all relative loads between 35 and 100% 1RM except for 55% 1RM (p = 0.112). Generally, compared at the same relative loads, the overhead press exhibited the greatest ACV followed by the squat, bench press, and deadlift (in order). In addition, relative strength level was inversely related to ACV at maximal loads (≥95% 1RM) for the squat, bench press, and deadlift while height was positively related to ACV at moderate loads (55% 1RM) for all lifts (p < 0.05). These results suggest that the load-velocity profile is unique for each of these exercises, and that velocity ranges used for exercise prescription should be specific to the exercise. A trainee's relative strength and height may be a primary influence on the ACV.


Subject(s)
Muscle Contraction , Resistance Training/methods , Weight Lifting/physiology , Adolescent , Adult , Age Factors , Body Height , Extremities/anatomy & histology , Female , Humans , Male , Muscle Strength , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...