Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720270

ABSTRACT

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Subject(s)
AMP-Activated Protein Kinases , Pulmonary Fibrosis , Silicon Dioxide , Simvastatin , Animals , Male , Rats , Acetophenones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Silicosis/drug therapy , Silicosis/pathology , Silicosis/metabolism , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolism
2.
Environ Res ; 250: 118506, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38387496

ABSTRACT

Polystyrene nanoplastics (PS-NPs), a group of ubiquitous pollutants, may injure the central nervous system through the blood‒brain barrier (BBB). However, whether exposure to PS-NPs contributes to BBB disruption and the underlying mechanisms are still unclear. In vivo, we found that PS-NPs (25 mg/kg BW) could significantly increase BBB permeability in mice and downregulate the distribution of the tight junction-associated protein zona occludens 1 (ZO-1) in brain microvascular endothelial cells (BMECs). Using an in vitro BBB model, exposure to PS-NPs significantly reduced the transendothelial electrical resistance and altered ZO-1 expression and distribution in a dose-dependent manner. RNA-seq analysis and functional investigations were used to investigate the molecular pathways involved in the response to PS-NPs. The results revealed that the ferroptosis and glutathione metabolism signaling pathways were related to the disruption of the BBB model caused by the PS-NPs. PS-NPs treatment promoted ferroptosis in bEnd.3 cells by inducing disordered glutathione metabolism in addition to Fe2+ and lipid peroxide accumulation, while suppressing ferroptosis with ferrostatin-1 (Fer-1) suppressed ferroptosis-related changes in bEnd.3 cells subjected to PS-NPs. Importantly, Fer-1 alleviated the decrease in ZO-1 expression in bEnd.3 cells and the exacerbation of BBB damage induced by PS-NPs. Collectively, our findings suggest that inhibiting ferroptosis in BMECs may serve as a potential therapeutic target against BBB disruption induced by PS-NPs exposure.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Ferroptosis , Polystyrenes , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Ferroptosis/drug effects , Polystyrenes/toxicity , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Mice , Brain/drug effects , Brain/metabolism , Brain/blood supply , Nanoparticles/toxicity , Male
3.
Folia Microbiol (Praha) ; 69(1): 1-15, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37644256

ABSTRACT

Bifidobacteria as a strictly anaerobic gram-positive bacteria, is widely distributed in the intestine, vagina and oral cavity, and is one of the first gut flora to colonize the early stages of life. Intestinal flora is closely related to health, and dysbiosis of intestinal flora, especially Bifidobacteria, has been found in a variety of diseases. Numerous studies have shown that in addition to maintaining intestinal homeostasis, Bifidobacteria may be involved in diseases covering all parts of the body, including the nervous system, respiratory system, genitourinary system and so on. This review collects evidence for the variation of Bifidobacteria in typical diseases among various systems, provides mild and effective therapeutic options for those diseases that are difficult to cure, and moves Bifidobacteria from basic research to further clinical applications.


Subject(s)
Bifidobacterium , Intestines , Female , Humans , Intestines/microbiology , Vagina/microbiology , Toes
4.
Genes Environ ; 45(1): 23, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658417

ABSTRACT

BACKGROUND: Evidence showed that N6-methyladenosine (m6A) is strongly associated with male germline development. However, the role of m6A methylation on circRNAs in amphibians remains unknown. In this study, we conducted m6A sequencing analysis to explore the m6A transcriptome-wide profile of circRNAs in testis tissues of Xenopus laevis (X. laevis) with and without treatment with 100 µg/L atrazine (AZ). RESULTS: The analysis showed that m6A modification of circRNAs enriched in sense overlapping in testes of X. laevis. We identified the differential m6A modification sites within circRNAs in testes of AZ-exposed X. laevis and compared that with animals from control group. The results showed that a total of 1507 methylated m6A sites was induced by AZ (760 up-methylated and 747 down-methylated). The cross-analysis exhibited a negative correlation of differentially methylated m6A peaks and circRNAs expression level. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that 20 key pathways may be involved in the mechanism of testis damage of AZ-exposed X. laevis. CONCLUSIONS: These findings indicated that differentially m6A-methylated circRNAs may play important roles in abnormal testis development of AZ-exposed X. laevis. This study is the first report about a map of m6A modification of circRNAs in male X. laevis and provides a basis for further studying on the function and mechanism of m6A methylation of circRNAs in the testis development of amphibian.

5.
Toxicology ; 484: 153397, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36526012

ABSTRACT

Ataxia telangiectasia mutated (ATM) is a pivotal sensor during the DNA damage response that slows cell passage through the cell cycle checkpoints to facilitate DNA repair, and liver fibrosis is an irreversible pathological consequence of the sustained wound-healing process, However, the effects of ATM on the development of liver fibrosis are still not fully understood. Therefore, the aim of the study was to investigate the effects and potential mechanisms of ATM on the progression of liver fibrosis. Wild-type and ATM-deficient were administered with carbon tetrachloride (CCl4, 5 ml/kg, i.p.) for 8 weeks to induce liver fibrosis, and the liver tissues and serum were collected for analysis. KU-55933 (10 µM) was used to investigate the effects of ATM blockage on CCl4-induced hepatocyte injury in vitro. The results showed that ATM deficiency aggravated the increased serum transaminase levels and liver MDA, HYP, and 8-OHdG contents compared with the model group (p < 0.05). Sirius red staining showed that ATM deficiency exacerbated liver collagen deposition in vivo, which was associated with the activation of TGF-ß1/Smad2 signaling. Furthermore, blocking ATM with KU-55933 exacerbated the production of ROS and DNA damage caused by CCl4 exposure in HepG2 cells, and KU-55933 treatment also reversed the downregulated expression of CDK1 and CDK2 after CCl4 exposure in vitro. Moreover, the loss of ATM perturbed the regulation of the hepatic cell ChK2-CDC25A/C-CDK1/2 cascade and apoptosis in vivo, which was accompanied by increased Ki67-positive and TUNEL-positive cells after chronic CCl4 treatment. In conclusion, our results indicated that ATM might be a critical regulator of liver fibrosis progression, and the underlying mechanisms of exacerbated liver fibrosis development in ATM-deficient mice might be associated with the dysregulation of hepatic cell proliferation and apoptosis.


Subject(s)
Ataxia Telangiectasia , Carbon Tetrachloride , Mice , Animals , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia/pathology , Liver Cirrhosis/metabolism , Liver , Transforming Growth Factor beta1/metabolism , Hepatocytes/metabolism , Hepatic Stellate Cells
6.
Ecotoxicol Environ Saf ; 244: 114066, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36108436

ABSTRACT

Macrophages play an important role in causing silicosis eventually becoming an irreversible fibrotic disease, and there are no specific drugs for silicosis in the clinic so far. Pirfenidone has consistently been shown to have anti-inflammatory and anti-fibrotic effects, but the specific mechanism by which it ameliorates fibrosis in silicosis is unclear. A rat silicosis model was established in this study, and lung tissues and serum were collected by batch execution at 14, 28, and 56 days. Also, the effects of Pirfenidone on macrophage polarization and pulmonary fibrosis were evaluated in silicosis with early intervention and late treatment by histological examination, Enzyme-linked immunosorbent assay, Hydroxyproline assay, Western blot and Quantitative reverse transcription polymerase chain reaction. The results showed that Pirfenidone significantly reduced pulmonary fibrosis in rats with silicosis, and both early intervention and late treatment effectively inhibited the expression of α-SMA, Col-I, Vimentin, Hydroxyproline, IL-1ß, IL-18, and the M2 macrophage marker CD206 and Arg-1, while only early intervention effectively inhibited E-cad, TGF-ß1, TNF-α, and the M1 macrophage marker iNOS, CD86. Furthermore, Pirfenidone dramatically reduced the mRNA expression of the JAK2/STAT3. These findings imply that Pirfenidone may reduce pulmonary fibrosis in silicosis rats by inhibiting macrophage polarization via the JAK2/STAT3 signaling pathway.


Subject(s)
Pneumonia , Pulmonary Fibrosis , Silicosis , Animals , Fibrosis , Hydroxyproline/pharmacology , Hydroxyproline/therapeutic use , Interleukin-18 , Janus Kinase 2/metabolism , Macrophages , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pyridones , RNA, Messenger , Rats , Signal Transduction , Silicosis/drug therapy , Silicosis/metabolism , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha , Vimentin/metabolism
7.
Chem Biol Interact ; 355: 109845, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35123993

ABSTRACT

Although it has been well recognized that benzene exposure can cause hematopoietic disorders such as aplastic anemia and leukemia, the underlying molecular mechanism remains to be fully understood. Emerging evidence indicated that aryl hydrocarbon receptor (AhR) plays important roles in hematopoietic and immune systems. This study investigated the activation of aryl hydrocarbon receptor (AhR) by hydroquinone (HQ) and its role in HQ-induced DNA damage and apoptosis in cultured human lymphocytes (JHP cells). We also investigated the effect of ROS on AhR activation and functions in JHP cells exposed to HQ with and without regulator including N-acetyl-l-cysteine (NAC), a potent antioxidant, and tert-butylhydroquinone (TBHQ), a Nrf2 activator. Results showed that HQ can cause oxidative stress, DNA damage and apoptosis. Pretreatment of an AhR antagonist (CH223191) can significantly increase the cell survival and mitigate HQ-induced toxicities such as DNA damage and apoptosis. We found that HQ can obviously increase expressions of total protein of AhR and prompt nuclear translocation compared to the control group. Interestingly, NAC can block HQ-induced AhR activation and DNA damage and apoptosis. Conclusively, our results indicated that HQ toxicity is mediated by AhR which is in turn regulated by ROS generated by HQ. The interaction between AhR and ROS drive and amplify the hematopoietic toxicity of HQ. This study provided new insights of mechanism and potential targets for the prevention and treatment to benzene-induced hematopoietic toxicity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hydroquinones/pharmacology , Ligands , Oxidative Stress/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Acetylcysteine/pharmacology , Apoptosis/drug effects , Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Benzene/toxicity , Cell Line , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , DNA Damage/drug effects , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/genetics
9.
BMC Pulm Med ; 22(1): 13, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34991559

ABSTRACT

BACKGROUND: Silicosis is a systemic disease characterized by persistent inflammation and incurable pulmonary fibrosis. Although great effort has been made to understand the pathogenesis of the disease, molecular mechanism underlying silicosis is not fully elucidated. This study was aimed to explore proteomic and transcriptomic changes in rat model of silicosis. METHODS: Twenty male Wistar rats were randomly divided into two groups with 10 rats in each group. Rats in the model group were intratracheally instilled with 50 mg/mL silicon dioxide (1 mL per rat) and rats in the control group were treated with 1.0 mL saline (1 mL per rat). Twenty-eight days later, transcriptomic analysis by microarray and tandem mass tags (TMT)-based proteomic analysis were performed to reveal the expression of mRNAs and proteins in lung tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyze the altered genes and proteins. The integrated analysis was performed between transcriptome and proteome. The data were further verified by RT-qPCR and parallel reaction monitoring (PRM). RESULTS: In total, 1769 differentially expressed genes (DEGs) and 650 differentially expressed proteins (DEPs) were identified between the silicosis model and control groups. The integrated analysis showed 250 DEPs were correlated to the corresponding DEGs (cor-DEPs-DEGs), which were mainly enriched in phagosome, leukocyte transendothelial migration, complement and coagulation cascades and cellular adhesion molecule (CAM). These pathways are interrelated and converged at common points to produce an effect. GM2a, CHI3L1, LCN2 and GNAI1 are involved in the extracellular matrix (ECM) and inflammation contributing to fibrosis. CONCLUSION: Our comprehensive transcriptome and proteome data provide new insights into the mechanisms of silicosis and helpful information for more targeted prevention and treatment of silicosis.


Subject(s)
Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Silicon Dioxide/adverse effects , Silicosis/genetics , Animals , China , Gene Expression , Male , Proteomics , Pulmonary Fibrosis/pathology , RNA, Messenger , Rats , Rats, Wistar , Silicosis/pathology , Transcriptome
10.
Ann Work Expo Health ; 66(3): 368-378, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34608940

ABSTRACT

OBJECTIVES: The present study aimed to investigate the distribution of lymphocyte subsets and cytokines expression in the peripheral blood of bitumen fumes-exposed workers. METHODS: In this study, 129 workers from molding and roasting workshops were recruited as the exposed group and 99 office and quality inspection staff were chosen as the control. The polycyclic aromatic hydrocarbons (PAHs) levels of bitumen fumes in individual and fixed-point air samples and the urinary levels of 1-hydroxypyrene (1-OH-P), 1-hydroxynaphthols (1-OH-N) and 2-hydroxynaphthols (2-OH-N) in workers were measured using High Performance Liquid Chromatography. The lymphocyte subsets and serum cytokines concentrations were analyzed by flow cytometry and cytometric bead array, respectively. RESULTS: The median values of PAHs were 0.08 mg/m3 for permissible concentration-time weighted average and 0.12 mg/m3 for permissible concentration-short term exposure (PC-STEL) in molding and roasting workshops, which were higher than that in the control area (< 0.01 mg/m3). Multivariate linear regression models were used to adjust for influential covariates, including age, gender, work age, smoking status, and alcohol consumptions. After adjusting for these covariates, we compared levels of urinary PAHs metabolites, the percentages of lymphocyte subsets, and serum cytokines concentrations between the two groups. The 1-OH-P, 1-OH-N, and 2-OH-N levels in the urine of bitumen fumes exposed workers were significantly higher than that in the controls (P < 0.05). Compared with the control group, the percentage of the natural killer (NK) cell (CD56+ cell) was significantly increased in the exposed group (P < 0.001). There was a significant decrease in the percentages of CD3+ T cell, CD4+ T cell, and CD8+ T cell in the exposed group compared to the control (P < 0.001). The serum levels of interleukin-1ß (IL-1ß) and IL-6 in bitumen fumes exposed workers were significantly higher than that of the controls (P < 0.05). Moreover, positive correlations were observed between the serum levels of IL-1ß, IL-6, and urinary 1-OH-P levels in bitumen fumes-exposed workers, respectively (P < 0.05). There were no significant differences in the serum levels of IL-8, tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-1ß (MIP-1ß) and monocyte chemotactic protein-1 (MCP-1) between the exposed group and the control group (P > 0.05). CONCLUSION: Our study suggested that low dose of bitumen fumes exposure could decrease the percentage of T cell, increase the percentage of NK cell and stimulate the release of serum IL-1ß and IL-6 in the peripheral blood of exposed workers. The serum levels of IL-1ß and IL-6 were positive correlated with the urinary 1-OH-P levels in bitumen fumes exposed workers. These results may inform the search for potential effective biomarkers and provide evidences for early health monitoring in workers occupationally exposed to bitumen fumes.


Subject(s)
Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Cytokines , Gases/analysis , Humans , Hydrocarbons , Interleukin-6 , Lymphocyte Subsets/chemistry , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis
11.
Genes Environ ; 43(1): 49, 2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34742356

ABSTRACT

BACKGROUND: Increasing evidence suggested N6-methyladenosine (m6A) modification is crucial for male germline development. However, m6A modification of lncRNAs gains a little attention in amphibians in recent years. Xenopus laevis (X. laevis) was chosen to be an ideal model organism for testing environmental endocrine disrupting chemicals (EDCs) exposure and resultant effects. Atrazine (AZ) as an endocrine disrupt can effect development of testis in amphibians. Our previous study revealed that m6A is a highly conserved modification across the species. RESULTS: The results of m6A sequences showed that m6A-methylated lncRNAs enriched in intergenic region in testes of X. laevis. We further examined the differential expression of lncRNAs m6A sites in testes of AZ-exposed and compared with that in animals from control group. The results indicated that up to 198 differentially methylated m6A sites were detected within 188 lncRNAs, in which 89 significantly up-methylated sites and 109 significantly down-methylated sites. Data from KEGG pathway analysis indicated that AZ-affected lncRNAs m6A sites were mainly involved in 10 pathways in which 3 mutual pathways were found in the result of differentially m6A-methylated mRNAs. CONCLUSIONS: These findings suggested that differentially m6A-methylated lncRNAs and these 3 pathways may act on regulatory roles in abnormal testis development of AZ-exposed X. laevis. This study for the first time provides insights into the profile of lncRNAs m6A modifications in amphibian species.

12.
Int Immunopharmacol ; 98: 107859, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34153664

ABSTRACT

To explore the potential role of HMGB1 on TDI-induced NLRP3 inflammasome activation, HBE cells were treated with TDI-HSA conjugate to observe the changes of HMGB1, TLR4, NF-κB, Nrf2 and NLRP3 inflammasome related proteins expressions, ROS release and MMP. NAC, TPCA-1 and Resatorvid pre-treatments were applied to explore the effects of ROS, NF-κB and TLR4 on TDI-induced NLRP3 inflammasome activation. The CRISPR/Cas9 system was used to construct HMGB1 gene knockout HBE cell line and then to explore the role of HMGB1 on TDI-HSA induced NLRP3 inflammasome activation. GL pre-treatment was applied to further confirm the role of HMGB1. Results showed that TDI increased HMGB1, TLR4, P-p65, Nrf2 proteins expressions and ROS release, decreased MMP level and activated NLRP3 inflammasome in HBE cells in a dose dependent manner. NAC, TPCA-1 and Resatorvid pre-treatments decreased the expression of P-p65 and inhibited NLRP3 inflammasome activation. Inhibition of HMGB1 decreased Nrf2 expression and ROS release, improved MMP level and reduced NLRP3 inflammasome activation. GL ameliorated NLRP3 inflammasome activation via inhibiting HMGB1 regulated ROS/NF-κB pathway. These results indicated that HMGB1 was involved in TDI-induced NLRP3 inflammasome activation as a positive regulatory mechanism. The study provided a potential target for early prevention and treatment of TDI-OA.


Subject(s)
HMGB1 Protein/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Respiratory Mucosa/metabolism , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockdown Techniques , HMGB1 Protein/genetics , Humans , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Respiratory Mucosa/immunology , Signal Transduction , Toluene 2,4-Diisocyanate/metabolism
13.
Toxicol Res (Camb) ; 10(1): 141-149, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33613981

ABSTRACT

Chlorpyrifos (CPF) is an organophosphate insecticide commonly used to treat fruit and vegetable crops. CPF can cause severe adverse effects on body organs including the liver and central nervous system. This study investigated the CPF-induced inflammation in mice and explored the role of intestinal flora changes in liver inflammation. Adult C57BL/6 male mice were exposed to a CPF of 0.01-, 0.1-, 1- and 10-mg/kg bodyweight for 12 weeks. The mice in experimental group given CPF solution dissolved in corn oil vehicle by gavage, was administered by intraoral gavage for 5 days per week for 12 weeks. Histopathological examination and inflammatory factor detection were performed on mice liver tissue. Faeces were used for 16S ribosomal RNA high-throughput sequencing to explore the impact of CPF on intestinal flora structure and diversity. The results showed that 1- and 10-mg/kg CPF caused different degrees of liver focal inflammation. The structure of intestinal flora changed significantly in mice including the decreased beneficial bacteria (Akkermansia, Prevotella and Butyricimonas) and increased pathogenic bacteria (Helicobacter and Desulfovibrio). Meanwhile, the results of Q-RT-PCR showed that there was more total bacterial DNA in the liver tissue of the mice treated with 10-mg/kg groups. In conclusion, the imbalance of intestinal flora, the decreased abundance of beneficial bacteria and the increased abundance of pathogenic bacteria, as well as the increase of total bacterial DNA in the liver tissues, maybe associated with the liver focal inflammation induced by CPF.

14.
Toxicol In Vitro ; 70: 105040, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33127434

ABSTRACT

Toluene-diisocyanate (TDI) is one of the main causes of occupational asthma. To study the role of autophagy in TDI-induced airway inflammation and airway remodeling in bronchial airway epithelial (16HBE) cells. We treated 16HBE cells with TDI-human serum albumin (TDI-HSA) conjugate to observe reactive oxygen species (ROS) release, autophagy activation, airway inflammation and airway remodeling. 3-Methyladenine (3-MA) and Rapamycin (Rapa) intervention were used to explore the effects of autophagy on inflammatory response and protein expression related to airway remodeling in 16HBE cells treated with TDI-HSA. Experimental results suggested that various concentrations of TDI-HSA (0, 40, 80 and 120 µg/mL) increased the release of ROS and the expression of Nrf2, activated autophagy and increased the expression of AMPK, Beclin-1, LC3 and decreased the expression of p62, promoted the levels of IL-5, IL-6 and IL-8 in 16HBE cells. Results also showed that E-cadherin expression decreased but an increase was observed in α-SMA and MMP-9 in the TDI-HSA group. The treatment of TDI-HSA combined with Rapa aggravated the above reaction whereas the inverse was true for TDI-HSA combined with 3-MA. These results indicated that autophagy is involved in TDI-induced airway inflammation and airway remodeling as a positive regulatory mechanism, inhibiting autophagy can significantly alleviate the TDI-induced inflammatory response and attenuate airway remodeling protein expression in 16HBE cells.


Subject(s)
Airway Remodeling/drug effects , Allergens/toxicity , Bronchi/cytology , Epithelial Cells/drug effects , Inflammation/chemically induced , Serum Albumin, Human/toxicity , Toluene 2,4-Diisocyanate/toxicity , Autophagy/drug effects , Cell Line , Cell Survival/drug effects , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Inflammation/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism
15.
PLoS One ; 15(10): e0241310, 2020.
Article in English | MEDLINE | ID: mdl-33119648

ABSTRACT

Silicosis is a systemic disease characterized by chronic persistent inflammation and incurable pulmonary fibrosis with the underlying molecular mechanisms to be fully elucidated. In this study, we employed tandem mass tag (TMT) based on quantitative proteomics technology to detect differentially expressed proteins (DEPs) in lung tissues of silica-exposed rats. A total of 285 DEPs (145 upregulated and 140 downregulated) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the biological pathway and functional classification of the proteins. Results showed that these DEPs were mainly enriched in the phagosome, lysosome function, complement and the coagulation cascade, glutathione metabolism, focal adhesion and ECM-receptor interactions. To validate the proteomics data, we selected and analyzed the expression trends of six proteins including CD14, PSAP, GM2A, COL1A1, ITGA8 and CLDN5 using parallel reaction monitoring (PRM). The consistent result between PRM and TMT indicated the reliability of our proteomic data. These findings will help to reveal the pathogenesis of silicosis and provide potential therapeutic targets. Data are available via ProteomeXchange with identifier PXD020625.


Subject(s)
Databases, Protein , Gene Expression Regulation/drug effects , Proteomics , Pulmonary Fibrosis/metabolism , Silicon Dioxide/toxicity , Animals , Male , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Rats , Rats, Wistar
16.
Chemosphere ; 245: 125631, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31877456

ABSTRACT

Recent discovery of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in mammals, plant and yeast revealed potential regulatory functions of this RNA modification. However, the role of the m6A methylomes in amphibious is still poorly understood. Here, we examined the m6A transcriptome-wide profile in testis tissues of Xenopus laevis (X. laevis) with and without treatment with 100 µg/L atrazine (AZ) through m6A sequencing analysis using the latest Illumina HiSeq sequencer. The results revealed that m6A is a highly conserved modification of mRNA in X. laevis. Distinct from that in mammals, m6A in X. laevisis enriched around the stop codon and start codon, as is reported in plant. We then investigated the differential expression m6A in testes of AZ-exposed X. laevis and compared that with the X. laevis in the control group by m6A sequencing. The results indicated that AZ leads to altered expression profile in 1380 m6A modification sites (696 upregulated and 684 downregulated). KEGG pathway analysis indicates that the "NOD-like receptors", "tight junction", "Peroxisome proliferator-activated receptors", "adherens junctions", "Glycerophospholipid metabolism" and "Fatty acid biosynthesis" signaling pathways may be associated with abnormal testis development of X. laevis due to exposure to AZ. Analysis results showed a positive correlation between m6A modification and mRNA abundance, suggesting a regulatory role of m6A in amphibious gene expression. Our first report of m6A transcriptome-wide map of an amphibian species X. laevis presented here provides a starting roadmap for uncovering m6A functions that may affect/control amphibian testis development.


Subject(s)
Atrazine/toxicity , Epigenome/physiology , Herbicides/toxicity , Xenopus laevis/physiology , Animals , Atrazine/metabolism , Down-Regulation , Gene Expression Profiling , Herbicides/metabolism , Male , RNA, Messenger/metabolism , Sex Differentiation , Testis/metabolism , Transcriptome , Up-Regulation , Xenopus laevis/genetics
17.
Toxicol Lett ; 317: 59-67, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31577921

ABSTRACT

Toluene-diisocyanate (TDI) is mainly used in the manufacturing process of polyurethane foams, and is a potent inducer of occupational asthma characterized by airway inflammation and airway hyperreactivity. Thymic stromal lymphopoietin (TSLP) plays an important role in the development of asthma, and correlating with the differentiation of Th2 and Th17 cells. However, the role of TSLP in TDI-induced asthma remains unclear. In this study, 96 TDI-exposed workers as well as a mouse model of TDI-induced asthma were investigated. The air exposure assessment result of TDI in the workplace showed that workers were exposed to inhalation of a very high concentration of TDI, approximately 8 times the recommended level, leading to a decrease in pulmonary function and an increase in inflammatory cells, as well as TSLP and IgE levels in the supernatant of sputum obtained from exposed workers. In order to further investigate the role of TSLP in the pathogenesis of TDI-induced asthma, a mouse model of TDI-induced asthma was also employed. Histopathological analysis of mouse lung and bronchus showed an obvious infiltration of inflammatory cells around the bronchus. The levels of inflammatory cells, IFN-γ, IL-4 and IL-17 in bronchoalveolar lavage fluid (BALF), the expression levels of TSLP protein and ROR-γt and IL-17 mRNA in mouse lung tissues were also significantly increased. However, after treatment with TSLP neutralizing antibody (TSLP-Ab), the degree of pulmonary and bronchial inflammation in mice was significantly alleviated, and the levels of inflammatory cells, IFN-γ, IL-4 and IL-17 in BALF, and the expression levels of ROR-γt and IL-17 mRNA in lung tissue were significantly decreased. Our data shows that TSLP plays an important role in the pathogenesis of TDI-induced asthma, and that TSLP-Ab can effectively alleviate TDI-induced airway inflammation of asthma.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antibodies, Neutralizing/pharmacology , Asthma/prevention & control , Cytokines/antagonists & inhibitors , Inflammation Mediators/antagonists & inhibitors , Lung/drug effects , Pneumonia/prevention & control , Toluene 2,4-Diisocyanate/adverse effects , Adult , Animals , Asthma/chemically induced , Asthma/immunology , Asthma/metabolism , Case-Control Studies , Cross-Sectional Studies , Cytokines/immunology , Cytokines/metabolism , Humans , Immunoglobulin E/immunology , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Inhalation Exposure/adverse effects , Interleukin-17/immunology , Lung/immunology , Lung/metabolism , Male , Mice, Inbred BALB C , Middle Aged , Occupational Exposure/adverse effects , Pneumonia/chemically induced , Pneumonia/immunology , Pneumonia/metabolism , Signal Transduction/drug effects , Thymic Stromal Lymphopoietin
18.
Toxicol Lett ; 310: 7-13, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30978436

ABSTRACT

Silicosis is a kind of chronic and incurable lung fibrotic disease with pathogenesis and molecular mechanisms largely unknown. Mounting evidence suggests that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of silicosis. However, how many lncRNAs involved in the pulmonary fibrosis remains to be elucidated. In this study, Wistar rats were exposed to silicon dioxide by an improved tracheal intubation method. Rats in the control group were treated with normal saline solution. Results showed that 28 days after exposure, there were significant differences in body weight and lung coefficient of rats treated with silica compared with control rats. The formation of lung fibrosis in silica-induced rats was confirmed by histologic examination. We then investigated the lncRNAs expression changes in lung tissues of silica-exposed rats and compared that with the rats in the control group using microarray. The results indicated that silica exposure leads to altered expression profile in 682 lncRNAs (300 upregulated and 382 downregulated). Seventy-three ceRNA pairs were acquired by predicted analysis. Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses were used to predict the biological pathway and functional classification of lncRNAs. The results showed that silica exposure affected 13 lncRNAs pathways. The functional classification mainly involved in protein binding, cell shape and extracellular exosome. This study indicated that alteration of lncRNAs may play a role in silica-induced pulmonary fibrosis through regulation of expressions of functional genes in lungs of rat. Our results provide more insights into the mechanism of silicosis.


Subject(s)
Gene Expression Profiling/methods , Lung/drug effects , Oligonucleotide Array Sequence Analysis , Pulmonary Fibrosis/genetics , RNA, Long Noncoding/genetics , Silicon Dioxide/toxicity , Silicosis/genetics , Animals , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Lung/metabolism , Lung/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , RNA, Long Noncoding/metabolism , Rats, Wistar , Silicosis/metabolism , Silicosis/pathology , Time Factors , Transcriptome/drug effects
19.
Int J Mol Med ; 43(3): 1229-1240, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30628656

ABSTRACT

Diseases of the cardiac system caused by silicon dioxide exposure have captured wide public attention. Upon entering the blood circulation, ultrafine particles have the potential to influence cardiomyocytes, leading to myocardial ischemia or even cardiac failure, and the molecular mechanisms remain to be completely elucidated. In this study, the toxicity of ultrafine particles on cardiomyocytes from rats exposed to silica nanoparticles was observed. Rats were randomly divided into a normal saline control group and three exposure groups (2, 5 and 10 mg/kg·body weight) that were intratracheally treated with 60­nm silica nanoparticles. Alterations in body weight, routine blood factors and myocardial enzymes, histopathological and microstructural alterations, apoptosis and the expression of apoptosis­associated proteins were assessed at the end of the exposure period. The silicon levels in the heart and serum, and myocardial enzymes in exposed rats were significantly increased in a dose­dependent manner. In addition, exposure to the silica nanoparticles caused notable histological and ultrastructural alterations in the hearts of these animals. Furthermore, a significant apoptotic effect was observed in the exposure groups. The present data suggest that silica nanoparticles may enter the circulatory system through the lungs, and are distributed to the heart causing cardiovascular injury. Silica nanoparticle­induced apoptosis via the mitochondrial pathway may serve an important role in observed cardiac damage.


Subject(s)
Apoptosis , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Nanoparticles , Silicon Dioxide , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Biomarkers , Gene Expression , Immunohistochemistry , Male , Myocytes, Cardiac/ultrastructure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Rats , Silicon Dioxide/chemistry
20.
Environ Toxicol ; 34(4): 505-512, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30675760

ABSTRACT

Long non-coding RNA (lncRNA) plays a critical role in male germline development. Atrazine (AZ) as an environmental endocrine disrupting chemical (EDCs) can induce male reproductive toxicity in amphibians. Our previous studies demonstrated that AZ can alter gene and circular RNA (circRNA) expression of damaged testes in Xenopus laevis (X. laevis). We furthered to investigate the lncRNA expression profiling in the testis of X. laevis. Over 3559 lncRNAs were detected by lncRNA sequencing. AZ induced 40 upregulated and 46 downregulated differentially expressed lncRNAs. KEGG analysis showed that AZ-affected lncRNAs mainly involve in 19 pathways among which 12 pathways are found in circRNA analysis. This study for the first time demonstrated that AZ can alter lncRNAs which may play a role in testicular degeneration through regulating expressions of functional genes in X. laevis. Our data may provide more insights on the mechanism about male reproductive toxicity of EDCs.


Subject(s)
Atrazine/toxicity , Endocrine Disruptors/toxicity , RNA, Long Noncoding/genetics , Testis/drug effects , Transcriptome/drug effects , Animals , Down-Regulation , Gene Expression Profiling , Male , Reproduction , Testis/metabolism , Testis/pathology , Up-Regulation , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...