Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1116, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212448

ABSTRACT

Vector-borne diseases emergence, particularly malaria, present a significant public health challenge worldwide. Anophelines are predominant malaria vectors, with varied distribution, and influenced by environment and climate. This study, in Ghana, modelled environmental suitability for Anopheles stephensi, a potential vector that may threaten advances in malaria and vector control. Understanding this vector's distribution and dynamics ensures effective malaria and vector control programmes implementation. We explored the MaxEnt ecological modelling method to forecast An. stephensi's potential hotspots and niches. We analysed environmental and climatic variables to predict spatial distribution and ecological niches of An. stephensi with a spatial resolution of approximately 5 km2. Analysing geospatial and species occurrence data, we identified optimal environmental conditions and important factors for its presence. The model's most important variables guided hotspot prediction across several ecological zones aside from urban and peri-urban regions. Considering the vector's complex bionomics, these areas provide varying and adaptable conditions for the vector to colonise and establish. This is shown by the AUC = 0.943 prediction accuracy of the model, which is considered excellent. Based on our predictions, this vector species would thrive in the Greater Accra, Ashanti Central, Upper East, Northern, and North East regions. Forecasting its environmental suitability by ecological niche modelling supports proactive surveillance and focused malaria management strategies. Public health officials can act to reduce the risk of malaria transmission by identifying areas where mosquitoes may breed, which will ultimately improve health outcomes and disease control.


Subject(s)
Anopheles , Malaria , Animals , Humans , Mosquito Vectors , Ghana , Malaria/epidemiology , Malaria/prevention & control , Ecosystem
2.
PLoS One ; 18(12): e0295390, 2023.
Article in English | MEDLINE | ID: mdl-38060554

ABSTRACT

Dengue, Zika and chikungunya are Aedes-borne viral diseases that have become great global health concerns in the past years. Several countries in Africa have reported outbreaks of these diseases and despite Ghana sharing borders with some of these countries, such outbreaks are yet to be detected. Viral RNA and antibodies against dengue serotype-2 have recently been reported among individuals in some localities in the regional capital of Ghana. This is an indication of a possible silent transmission ongoing in the population. This study, therefore, investigated the entomological transmission risk of dengue, Zika and chikungunya viruses in a forest and domestic population in the Greater Accra Region, Ghana. All stages of the Aedes mosquito (egg, larvae, pupae and adults) were collected around homes and in the forest area for estimation of risk indices. All eggs were hatched and reared to larvae or adults for morphological identification together with larvae and adults collected from the field. The forest population had higher species richness with 7 Aedes species. The predominant species of Aedes mosquitoes identified from both sites was Aedes aegypti (98%). Aedes albopictus, an important arbovirus vector, was identified only in the peri-domestic population at a prevalence of 1.5%, significantly higher than previously reported. All risk indices were above the WHO threshold except the House Index for the domestic site which was moderate (19.8). The forest population recorded higher Positive Ovitrap (34.2% vs 26.6%) and Container (67.9% vs 36.8%) Indices than the peri-domestic population. Although none of the mosquito pools showed the presence of dengue, chikungunya or Zika viruses, all entomological risk indicators showed that both sites had a high potential arboviral disease transmission risk should any of these viruses be introduced. Continuous surveillance is recommended in these and other sites in the Metropolis to properly map transmission risk areas to inform outbreak preparedness strategies.


Subject(s)
Aedes , Arbovirus Infections , Chikungunya Fever , Dengue , Zika Virus Infection , Zika Virus , Humans , Adult , Animals , Chikungunya Fever/epidemiology , Ghana/epidemiology , Mosquito Vectors , Arbovirus Infections/epidemiology , Zika Virus Infection/epidemiology , Forests , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...