Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(1): 015701, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35841582

ABSTRACT

Triple bonding in the nitrogen molecule (N_{2}) is among the strongest chemical bonds with a dissociation enthalpy of 9.8 eV/molecule. Nitrogen is therefore an excellent test bed for theoretical and numerical methods aimed at understanding how bonding evolves under the influence of the extreme pressures and temperatures of the warm dense matter regime. Here, we report laser-driven shock experiments on fluid molecular nitrogen up to 800 GPa and 4.0 g/cm^{3}. Line-imaging velocimetry measurements and impedance matching method with a quartz reference yield shock equation of state data of initially precompressed nitrogen. Comparison with numerical simulations using path integral Monte Carlo and density functional theory molecular dynamics reveals clear signatures of chemical dissociation and the onset of L-shell ionization. Combining data along multiple shock Hugoniot curves starting from densities between 0.76 and 1.29 g/cm^{3}, our study documents how pressure and density affect these changes in chemical bonding and provides benchmarks for future theoretical developments in this regime, with applications for planetary interior modeling, high energy density science, and inertial confinement fusion research.

2.
Phys Rev Lett ; 110(13): 135504, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581337

ABSTRACT

The phase diagrams of MgSiO3 and MgO are studied from first-principles theory for pressures and temperatures up to 600 GPa and 20,000 K. Through the evaluation of finite-temperature Gibbs free energies, using density-functional theory within the generalized gradient approximation as well as with hybrid exchange-correlation functionals, we find evidence for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and solid MgO, with a volume change of approximately 1.2%. The demixing transition is driven by the crystallization of MgO--the reaction only occurs below the high-pressure MgO melting curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point at 364 GPa and 12,000 K.

3.
Proc Natl Acad Sci U S A ; 109(37): 14808-12, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22908240

ABSTRACT

We present ab initio calculations of the phase diagram of liquid CO(2) and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid-liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid-liquid-solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO(2) phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid-liquid transitions. Furthermore, the previously suggested phase separation of CO(2) into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO(2) does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.


Subject(s)
Carbon Dioxide/chemistry , Models, Chemical , Phase Transition , Pressure , Temperature , Molecular Dynamics Simulation , Thermodynamics
4.
Phys Rev Lett ; 102(1): 015701, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19257211

ABSTRACT

We report results of first-principles molecular dynamics simulations, which predict a first-order phase transition from molecular to polymeric liquid nitrogen. The liquid-liquid phase boundary is near 88 GPa along the 2000 K isotherm and has a critical point between 4000 and 5000 K and 50 to 75 GPa. At higher temperatures, molecular nitrogen undergoes temperature-driven dissociation to an atomic liquid. The nature of the liquid-liquid transition and the structure of the new polymeric phase are characterized, and ways to experimentally confirm our findings are proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...