Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0295081, 2023.
Article in English | MEDLINE | ID: mdl-38032889

ABSTRACT

In stone tool studies, the analysis of different technological and typological features is known to provide distinct but interrelated information on the design and use of artefacts. The selection of these features can potentially influence the understanding and reconstruction of past human technological behaviour across time. One feature frequently part of a standard lithic analysis is the measurement of edge angles. The angle of an edge, unmodified or shaped by retouch and an integral part of the overall tool design, is certainly a parameter that influences the interpretation of an artefact. The acuteness of an edge angle is often linked to aspects such as cutting, carving, or scraping efficiency and durability and thus, tool performance. Knowing the actual edge angle of a stone tool can therefore have important implications for its interpretation. In the case of edge angle analyses, manual measuring techniques have been established for many years in lithic studies. Here, we introduce a new method for accurate and precise edge angle measurements based on 3D data (hereafter 3D-EdgeAngle). 3D-EdgeAngle consists of a script-based, semi-automated edge angle measuring method applicable to 3D models. Unlike other methods, 3D-EdgeAngle illustrates an objective way of measuring the edge angle at cross sections along the entire tool edge in defined steps and, moreover, allows measurements at different distances perpendicular to the edge by controlling three involved parameters. Thus, with this method, the edge angle can be measured at any point in a high resolution and scale of analysis. Compared to measurements taken manually, with this method random and systematic errors can be reduced significantly. Additionally, all data are reproducible and statistically evaluable. We introduce 3D-EdgeAngle as a standard method to calculate edge angles with a highly accurate and systematic approach. With this method, we aim to improve the process of studying lithics and thus to increase the understanding of past human tool design.

2.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37540201

ABSTRACT

MOTIVATION: Including ion mobility separation (IMS) into mass spectrometry proteomics experiments is useful to improve coverage and throughput. Many IMS devices enable linking experimentally derived mobility of an ion to its collisional cross-section (CCS), a highly reproducible physicochemical property dependent on the ion's mass, charge and conformation in the gas phase. Thus, known peptide ion mobilities can be used to tailor acquisition methods or to refine database search results. The large space of potential peptide sequences, driven also by posttranslational modifications of amino acids, motivates an in silico predictor for peptide CCS. Recent studies explored the general performance of varying machine-learning techniques, however, the workflow engineering part was of secondary importance. For the sake of applicability, such a tool should be generic, data driven, and offer the possibility to be easily adapted to individual workflows for experimental design and data processing. RESULTS: We created ionmob, a Python-based framework for data preparation, training, and prediction of collisional cross-section values of peptides. It is easily customizable and includes a set of pretrained, ready-to-use models and preprocessing routines for training and inference. Using a set of ≈21 000 unique phosphorylated peptides and ≈17 000 MHC ligand sequences and charge state pairs, we expand upon the space of peptides that can be integrated into CCS prediction. Lastly, we investigate the applicability of in silico predicted CCS to increase confidence in identified peptides by applying methods of re-scoring and demonstrate that predicted CCS values complement existing predictors for that task. AVAILABILITY AND IMPLEMENTATION: The Python package is available at github: https://github.com/theGreatHerrLebert/ionmob.


Subject(s)
Machine Learning , Peptides , Peptides/chemistry , Mass Spectrometry/methods , Amino Acid Sequence , Proteomics/methods , Ions
3.
BMC Bioinformatics ; 23(1): 287, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858828

ABSTRACT

BACKGROUND: Mass spectrometry is an important experimental technique in the field of proteomics. However, analysis of certain mass spectrometry data faces a combination of two challenges: first, even a single experiment produces a large amount of multi-dimensional raw data and, second, signals of interest are not single peaks but patterns of peaks that span along the different dimensions. The rapidly growing amount of mass spectrometry data increases the demand for scalable solutions. Furthermore, existing approaches for signal detection usually rely on strong assumptions concerning the signals properties. RESULTS: In this study, it is shown that locality-sensitive hashing enables signal classification in mass spectrometry raw data at scale. Through appropriate choice of algorithm parameters it is possible to balance false-positive and false-negative rates. On synthetic data, a superior performance compared to an intensity thresholding approach was achieved. Real data could be strongly reduced without losing relevant information. Our implementation scaled out up to 32 threads and supports acceleration by GPUs. CONCLUSIONS: Locality-sensitive hashing is a desirable approach for signal classification in mass spectrometry raw data. AVAILABILITY: Generated data and code are available at https://github.com/hildebrandtlab/mzBucket . Raw data is available at https://zenodo.org/record/5036526 .


Subject(s)
Algorithms , Software , Mass Spectrometry , Proteomics/methods
4.
PLoS One ; 15(12): e0243295, 2020.
Article in English | MEDLINE | ID: mdl-33270795

ABSTRACT

Metrology has been successfully used in the last decade to quantify use-wear on stone tools. Such techniques have been mostly applied to fine-grained rocks (chert), while studies on coarse-grained raw materials have been relatively infrequent. In this study, confocal microscopy was employed to investigate polished surfaces on a coarse-grained lithology, quartzite. Wear originating from contact with five different worked materials were classified in a data-driven approach using machine learning. Two different classifiers, a decision tree and a support-vector machine, were used to assign the different textures to a worked material based on a selected number of parameters (Mean density of furrows, Mean depth of furrows, Core material volume-Vmc). The method proved successful, presenting high scores for bone and hide (100%). The obtained classification rates are satisfactory for the other worked materials, with the only exception of cane, which shows overlaps with other materials. Although the results presented here are preliminary, they can be used to develop future studies on quartzite including enlarged sample sizes.


Subject(s)
Quartz/chemistry , Quartz/classification
5.
Sci Rep ; 9(1): 6313, 2019 04 19.
Article in English | MEDLINE | ID: mdl-31004088

ABSTRACT

Many archeologists are skeptical about the capabilities of use-wear analysis to infer on the function of archeological tools, mainly because the method is seen as subjective, not standardized and not reproducible. Quantitative methods in particular have been developed and applied to address these issues. However, the importance of equipment, acquisition and analysis settings remains underestimated. One of those settings, the numerical aperture of the objective, has the potential to be one of the major factors leading to reproducibility issues. Here, experimental flint and quartzite tools were imaged using laser-scanning confocal microscopy with two objectives having the same magnification but different numerical apertures. The results demonstrate that 3D surface texture ISO 25178 parameters differ significantly when the same surface is measured with objectives having different numerical apertures. It is, however, unknown whether this property would blur or mask information related to use of the tools. Other acquisition and analyses settings are also discussed. We argue that to move use-wear analysis toward standardization, repeatability and reproducibility, the first step is to report all acquisition and analysis settings. This will allow the reproduction of use-wear studies, as well as tracing the differences between studies to given settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...