Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters











Publication year range
1.
ACS Omega ; 9(34): 36086-36098, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220496

ABSTRACT

Three neurotransmitters belonging to catecholamines (dopamine, noradrenaline, adrenaline) and related α-amino acids (DOPA and tyrosine) were studied by quantum-chemical ab initio and DFT calculations using B3LYP and DLPNO-CCSD(T) methods in water. In addition to the three canonical forms, zwitterionic forms were also investigated, each in three oxidation states (molecular cation L+, electroneutral molecule L0, and molecular anion L-). Each species was subjected to geometry optimization followed by vibrational analysis. Electronic properties (adiabatic ionization energy, electron affinity, chemical hardness, molecular electronegativity, electrophilicity index, dipole moment, electric polarizability, and quadrupole moment) and standard thermodynamic quantities (inner energy, entropy, enthalpy, and Gibbs energy) were evaluated, which allows the absolute oxidation and reduction potentials to be calculated. The absolute reduction potential (ARP) was found to correlate with the electrophilicity index ω along a straight line. Moreover, in addition to the standard expression for the absolute redox potential using reaction Gibbs energy, an approximation based on ionization energy and/or electron affinity was also tested. The main finding is that dopamine is a much weaker oxidizing agent with the ARP = 0.99 V relative to tyrosine with ARP = 1.38 V for canonical structures in water. This is also true for the zwitterionic structures in water: for dopamine ARP = 0.63 V is much lower relative to tyrosine with ARP = 1.31 V. The protonated form (DOPAH+) has the highest ARP = 2.02 V. Prediction of the redox potentials is an important factor influencing antioxidant (EC50) and/or antireductant activity. Based on 16 molecular properties for 20 molecules (320 entries), advanced statistical methods (cluster analysis, principal component analysis, pair-correlation) reveal that several groups of similarity exist: {dopamine-noradrenaline}, different from {adrenaline-DOPA-(tyrosine)} and zwitterionic forms of {dopamine-noradrenaline-adrenaline}.

2.
J Phys Chem A ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264349

ABSTRACT

Four branched-chain aliphatic α-amino acids─α-alanine, valine, leucine, and isoleucine (1-4)─were investigated by quantum-chemical calculations in water as a solvent by two methods. The B3LYP variant of DFT calculations was used to obtain the electronic structure and molecular descriptors of these species in their canonical amino acid form as well as the related zwitterionic form in three oxidation states (cation, neutral molecule, and anion). A total of 24 species were subjected to full geometry optimization and complete vibration analysis. Quantities related to ionization or affinity processes were evaluated under adiabatic conditions. The calculated standard reaction Gibbs energy facilitates evaluation of the absolute oxidation and reduction potential. The absolute reduction potential correlates with the electrophilicity index, and the absolute oxidation potential correlates with the adiabatic ionization energy. This finding makes it possible to skip the tedious vibrational analysis and use electronic properties to estimate the redox potentials. The molecular descriptors were compared with the calculated properties of four linear amino acids (glycine, ß-alanine, GABA, and DAVA). Parallel calculations using the DLPNO-CCSD(T) method gave analogous results for 24 species. The absolute oxidation potential was related to the antioxidant activity index, which showed only a moderate antioxidant activity of 1-4.

3.
Dalton Trans ; 53(26): 10824-10828, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887079

ABSTRACT

AC susceptibility measurements of [FeIII(L5)(NCSe)] reveal a field supported slow magnetic relaxation. On cooling, the relaxation time of the high-frequency fraction decreases which is a sign of reciprocating thermal behaviour. The relaxation time for the low-frequency mode at T = 2.0 K is as high as τ(LF) = 2.0 s.

4.
Amino Acids ; 56(1): 5, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300332

ABSTRACT

Four linear amino acids of increased separation of the carboxyl and amino groups, namely glycine (aminoacetic acid), ß-alanine (3-aminopropanoic acid), GABA (4-aminobutanoic acid) and DAVA (5-aminopentanoic acid), have been studied by quantum chemical ab initio and DFT methods including the solvent effect in order to get electronic structure and molecular descriptors, such as ionisation energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index, dipole moment, quadrupole moment and dipole polarizability. Thermodynamic functions (zero-point energy, inner energy, enthalpy, entropy, and the Gibbs energy) were evaluated after the complete vibrational analysis at the true energy minimum provided by the full geometry optimization. Reaction Gibbs energy allows evaluating the absolute redox potentials on reduction and/or oxidation. The non-local non-additive molecular descriptors were compared along the series showing which of them behave as extensive, varying in match with the molar mass and/or separation of the carboxyl and amino groups. Amino acidic forms and zwitterionic forms of the substances were studied in parallel in order to compare their relative stability and redox properties. In total, 24 species were investigated by B3LYP/def2-TZVPD method (M1) including neutral molecules, molecular cations and molecular anions. For comparison, MP2/def2-TZVPD method (M2) with full geometry optimization and vibrational analysis in water has been applied for 12 species; analogously, for 24 substances, DLPNO-CCSD(T)/aug-cc-pVTZ method (M3) has been applied in the geometry obtained by MP2 and/or B3LYP. It was found that the absolute oxidation potential correlates with the adiabatic ionisation energy; the absolute reduction potential correlates with the adiabatic electron affinity and the electrophilicity index. In order to validate the used methodology with experimental vertical ionisation energies and vibrational spectrum obtained in gas phase, calculations were done also in vacuo.


Subject(s)
Amino Acids , Water , gamma-Aminobutyric Acid , Glycine , beta-Alanine
5.
Dalton Trans ; 53(11): 5147-5151, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38380676

ABSTRACT

The structure and magnetic properties of a complex containing a {Dy2Cu5} core are presented. In 1, the Dy(III) are 9- and the Cu(II) are 4-, 5- and 6-coordinated. Antiferromagnetic interactions cause an irregular energy spectrum with the ground state J = 25/2. The complex is a single molecule magnet exhibiting slow magnetic relaxation in zero magnetic field.

6.
Inorg Chem ; 63(2): 1068-1082, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38166196

ABSTRACT

To get a better insight into understanding the factors affecting the enhancement of the magnetic anisotropy in single molecule (single ion) magnets, two cobalt(II) complexes based on a tridentate ligand 2,6-di(thiazol-2-yl)pyridine substituted at the 4-position with N-methyl-pyrrol-2-yl have been synthesized and studied by X-ray crystallography, AC and DC magnetic data, FIRMS and HFEPR spectra, and theoretical calculations. The change of the counteranion in starting Co(II) salts results in the formation of pentacoordinated mononuclear [Co(mpyr-dtpy)Cl2]·2MeCN (1) complex and binuclear [Co(mpyr-dtpy)2][Co(NCS)4] (2) compound. The observed marked distortion of trigonal bipyramid geometry in 1 and cationic octahedral and anionic tetrahedral units in 2 brings up a question about the validity of the spin-Hamiltonian formalism and the possibility of determining the value and sign of the zero-field splitting D parameter. Both complexes exhibit field-induced slow magnetic relaxation with two or three relaxation channels at BDC = 0.3 T. The high-frequency relaxation time in the reciprocal form τ(HF)-1 = CTn develops according to the Raman relaxation mechanism (for 2, n = 8.8) and the phonon-bottleneck-like mechanism (for 1, n = 2.3). The high-frequency relaxation time at T = 2.0 K and BDC = 0.30 T is τ(HF) = 96 and 47 µs for 1 and 2, respectively.

7.
Dalton Trans ; 53(4): 1492-1496, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38131466

ABSTRACT

A dinuclear complex [(H2O)Zn(LH)Eu(NO3)3] containing a hexadentate Schiff-base {N2O4}-donor ligand LH2- was prepared and characterized by X-ray structural analysis and IR, electronic and fluorescence spectroscopy. DC magnetic data show that upon heating the diamagnetic complex with the ground state Eu(III)-7F0 and Zn(II)-1S switches to paramagnetic species due to the population of 7FJ (J = 1 to 6) magnetic multiplets. The magnetic susceptibility increases from zero, passes through a maximum, and then decreases upon heating. This behaviour can be explained using a spin-orbit Hamiltonian with an axial distortion term. There is an alternative interpretation of the susceptibility data based on a two-level model similar to that used in the spin crossover theory.

8.
J Mol Model ; 29(12): 370, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953387

ABSTRACT

CONTEXT: Nitisinone is a medium-sized organic molecule that is used in treating hereditary tyrosinemia type 1 (HT-1). The structurally analogous mesotrione, however, is used as a pesticide/herbicide. What molecular properties are responsible for the similarity/dissimilarity of these molecules is investigated here. The solvent effect reduces the electron affinity to rather negative values and causes the negative electron affinity which manifests itself in a very high positive absolute reduction potential. METHODS: B3LYP method was utilized for a geometry optimization of nitisinone and mesotrione in their neural and ionized (L0, L+, L-) forms of 6 structures. The calculations were conducted in water as a solvent using conductor-like polarizable continuum model (CPCM), nitisinone also in vacuo. The complete vibrational analysis at the true energy minimum allows evaluating the thermodynamic functions with focus to the zero-point energy and overall entropic term. The change of the Gibbs energy on reductions and/or oxidation facilitates evaluating the absolute reduction and absolute oxidation potentials. Also, DLPNO-CCSD(T) method that involves the major part of the correlation energy has been applied to nitisinone and mesotrione and their molecular ions.

9.
ACS Omega ; 8(31): 28577-28582, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576642

ABSTRACT

Ab initio calculations of HF+MP2 and DFT-B3LYP quality have been used in calculating the molecular geometries and properties of neutral and charged molecules of glycine in amino acid as well as zwitterionic forms. A traditional set of molecular descriptors has been enriched by the molecular chemical potential, expressed via the Mulliken electronegativity, and Pearson's chemical hardness. In the global energy minimum, the complete vibrational analysis allowed evaluating the standard Gibbs energy and related thermodynamic quantities.

10.
J Phys Chem A ; 127(31): 6412-6424, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37494700

ABSTRACT

A number of hexacoordinate, pentacoordinate, and tetracoordinate Ni(II) complexes have been investigated by applying ab initio CASSCF + NEVPT2 + SOC calculations and Generalized Crystal Field Theory. The geometry of the coordination polyhedron covers D4h, D3h, D2h, D2d, C4v, C3v, and C2v symmetry. The calculated spin-Hamiltonian parameters D and E were compared to the available experimental data. The limiting values of the D-parameter in the class of Ni(II) complexes are identified. Magnetic anisotropy in Ni(II) complexes, expressed by the axial zero-field splitting parameter D, seriously depends upon the ground and first excited electronic states. In hexacoordinate complexes, the ground electronic term is nondegenerate 3B1g for the D4h symmetry; D is slightly positive or negative. In tetracoordinate systems, D is only positive when the electronic ground state is nondegenerate 3A or 3B; this diverges on the τ4 path when oblate bisphenoid approaches the prolate geometry and a level crossing with 3E occurs. In pentacoordinate systems, D could be extremely negative when approaching a trigonal bipyramid (Addison index τ5 ∼ 1, ground state 3E″). In pentacoordinate Ni(II) complexes with the D3h and C3v symmetry of the coordination polyhedron, the ground electronic term is orbitally doubly degenerate which causes the D-parameter stays undefined. It is emphasized that one has to inspect compositions of the spin-orbit multiplets from the spin states |MS⟩ and check whether the weights confirm the expected spin-Hamiltonian picture: with D > 0, the ground state contains a dominant part of |0⟩ (close to 100%) whereas with D < 0 the spin-orbit doublet is formed of |±1⟩ with high weights (approaching 50 + 50%). The calculations show that the situations are not black and white, and the mixing of the states might be more complex especially when the rhombic zero-field splitting parameter E is in the play. In the case of the 3E ground term, six spin-orbit multiplets are formed by mixing six |MS⟩ states from the ground and quasi-degenerate excited states.

11.
J Mol Model ; 29(8): 245, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37442864

ABSTRACT

CONTEXT: l-Tyrosine is a naturally occurring agent that acts as a precursor in biosynthesis of monoaminergic neurotransmitters in brain such as dopamine, adrenaline, noradrenaline, and hormones like thyroxine and triiodothyronine. While l-tyrosine in vacuo adopts the canonical aminoacid form with -NH2 and -COOH functional groups, from neutral solutions, is crystallizes in the zwitterionic form possessing -NH3+ and -COO- groups. As l-tyrosine is non-innocent agent with respect to redox processes, redox ability in water expressed by the absolute oxidation and reduction potentials is investigated. The cluster analysis applied to a set of nine related neurotransmitters and trace amines confirms that l-tyrosine is mostly similar to aminoacid forms of phenylalanine, octopamine, and noradrenaline. METHODS: The energetic data at the Hartree-Fock MO-LCAO-SCF method has been conducted using def2-TZVP basis set, and improved by the many-body perturbation theory using the MP2 correction to the correlation energy. For the aminoacid form and the zwitterionic form of l-tyrosine, a set of molecular descriptors has been evaluated (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index, dipole moment, quadrupole moment, and dipole polarizability). The solvent effect (CPCM) is very expressive to the zwitterionic form and alters the sign of the electron affinity from positive to negative values. In parallel, density-functional theory with B3LYP variant in the same basis set has been employed for full geometry optimization of the neutral and ionized forms of l-tyrosine allowing assessing the adiabatic (a) ionization/affinity processes. The complete vibrational analysis enables evaluating thermodynamic functions such as the inner energy, enthalpy, entropy, Gibbs energy, and consequently the absolute oxidation and reduction potentials. Of applied methods, the most reliable are B3LYP(a) results that account to the correlation energy and the electron and nuclear relaxation during the ionization/affinity processes.


Subject(s)
Amines , Tyrosine , Amino Acids , Thermodynamics , Norepinephrine
12.
Dalton Trans ; 52(23): 7885-7892, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37212455

ABSTRACT

Two hexacoordinate Co(II) complexes [Co(hfac)2(etpy)2] (1) and [Co(hfac)2(bzpyCl)2] (2) were synthesized and spectrally and structurally characterized. The {CoO4N2} chromophore adopts a geometry of the elongated tetragonal bipyramid with a small o-rhombic component. This less common arrangement causes the magnetic data to need be analysed using the Griffith-Figgis model, instead of the commonly used spin-Hamiltonian with zero-field splitting parameters D and E. In the case of the elongated bipyramid for d7 complexes, the source of the magnetic anisotropy of an easy-axis type is the axial crystal field splitting Δax. The ab initio CASSCF calculations followed by the NEVPT2 module confirm that the ground electronic term is quasi-degenerate owing to the splitting of the 4Eg (D4h) mother term. The lowest spin-orbit multiplets appear as four Kramers doublets belonging to the Γ5 irreducible representation of the double point group D2'. They exhibit a serious mixing of the |±1/2〉 and |±3/2〉 spins which reflects a sizable effect of the spin-orbit coupling. Both complexes exhibit field-supported slow magnetic relaxation governed by the Raman process.

13.
J Phys Chem A ; 127(14): 3256-3264, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36996307

ABSTRACT

The majority of experimental data in electron spin resonance and molecular magnetism are interpreted in terms of the spin-Hamiltonian (SH) formalism. However, this is an approximate theory that requires a proper testing. In the older variant, the multielectron terms are used as a basis in which the D-tensor components are evaluated by employing the second-order perturbation theory (PT) for nondegenerate states; here, the spin-orbit interaction expressed via the spin-orbit splitting parameter λ serves for the perturbation. The model space is restricted only to the fictitious spin functions |S, M⟩. In the case of the orbital (quasi) degeneracy of the ground term, the PT tends to diverge and the subtracted D, E, and g parameters are false. In the second variant working in the "complete active space" (CAS), the spin-orbit coupling operator is involved by the variation method resulting in the spin-orbit multiplets (energies and eigenvectors) The multiplets can be evaluated either by applying ab initio CASSCF + NEVPT2 + SOC calculations or by using semiempirical generalized crystal-field theory (with the one-electron SOC operator depending upon ξ). The resulting states can be projected onto the subspace of the spin-only kets in the way that the eigenvalues stay invariant. Such an effective Hamiltonian matrix can be reconstructed using six independent components of the symmetric D-tensor from which the D and E values are obtained by solving linear equations. The eigenvectors of the spin-orbit multiplets in the CAS allow determining the dominating composition of the spin projection─cumulative weights of |±M⟩. These are conceptually different from those generated by the SH alone. It is shown that in some cases, the SH theory works satisfactorily for a series of transition-metal complexes; however, sometimes it fails. The ab initio calculations on the SH parameters are compared with the approximate generalized crystal-field theory conducted at the experimental geometry of the chromophore. In total, 12 metal complexes have been analyzed. One of the criteria that assesses the validity of SH is the projection norm N for spin multiplets (this has not to be far from 1). Another criterion is the gap in the spectrum of the spin-orbit multiplets that separates the hypothetical (fictitious) spin-only manifold from the rest of the states.

14.
Chem Commun (Camb) ; 59(18): 2612-2615, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36757181

ABSTRACT

Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.

15.
Inorg Chem ; 61(44): 17848-17854, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36287226

ABSTRACT

Shapeness of the coordination polyhedra is quantified by a procedure that moves arbitrary Cartesian coordinates of the complex to the origin, rotates them, reorders them, and compares with the predefined model complex of exact symmetry by calculating the square Euclidian distance and/or R-factor as agreement factors. The generalized crystal-field theory has been enriched by considering a non-perfect match of the characters of the irreducible representations borne by the eigenvectors representing the crystal-field terms with those assigned to a perfect symmetry. The agreement of quasi-symmetry with the perfect one is quantified by an array of square Euclidian distances and/or R-factors. This procedure allows assignment of electronic d-d transitions in the case of non-perfect (quasi) symmetry.

16.
RSC Adv ; 12(33): 21674-21680, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35975040

ABSTRACT

The triangulo-{Er3} complex [Er3Cl(o-van)3(OH)2(H2O)5]Cl3·nH2O (n = 9.4; H(o-van) = o-vanillin) (1) was generated by an in situ method. The isolated Er(iii) complex 1 was characterized by elemental analysis and molecular spectroscopy. The results of single crystal X-ray diffraction studies have shown that 1 is built up of trinuclear [Er3Cl(o-van)3(OH)2(H2O)5]3+ complex cations, chloride anions and water solvate molecules. Within the complex cation the three Er(iii) central atoms are placed at the apexes of a triangle which are bridged by three (o-van)- ligands with additional chelating functions and two µ3-OH- ligands. Additionally five aqua and one chlorido ligands complete the octa-coordination of the three Er(iii) atoms. AC susceptibility measurements reveal that the compound exhibits slow magnetic relaxation with two relaxation modes.

17.
Dalton Trans ; 51(14): 5612-5616, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35315860

ABSTRACT

A hexacoordinate Cu(II) complex with the {CuO4O'N} donor set shows an intermolecular π-π stacking owing to which a 1D-chain structure is formed. The DC magnetic data at low temperature are consistent with the Curie law. The AC susceptibility shows a field supported slow magnetic relaxation that survives up to 7 K. The relaxation time at T = 2.0 K and BDC = 0.2 T is τ = 0.23 ms and it increases at BDC = 0.6 T to τ = 2.9 ms.

18.
J Mol Model ; 27(12): 355, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792651

ABSTRACT

Ten amino acids have been subjected to the quantum chemical calculations using the ab initio MO-LCAO-SCF calculations. When the geometry optimization started form the X-ray structure confirming the zwitterionic form, the ab initio calculations in vacuo result in the amino acid (canonical) form with the hydrogen atom attached not to the amine but to the carboxylate group. At the optimum geometry, a number of properties were evaluated: dipole moment, dipole polarizability, molecular surface, molecular volume, HOMO, LUMO, ionization energy, and electron affinity using the ΔSCF approach and their values corrected for electron correlation by the 2nd order perturbation theory (MP2). Also, the Mulliken electronegativity and Pearson hardness were evaluated. These properties have been mutually correlated by employing the statistical multivariate methods: the cluster analysis, the probabilistic neural network classifier, the principal component analysis, and the Pearson pair correlation. In addition, the molecular electrostatic potential mapped on the isovalue surface of charge density has been drawn. After the full vibrational analysis, thermodynamic properties at 300 K were evaluated: internal energy, entropy, and the free energy.


Subject(s)
Amino Acids/chemistry , Hydrogen , Molecular Conformation , Quantum Theory , Thermodynamics , Vibration
19.
Dalton Trans ; 50(10): 3468-3472, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33650611

ABSTRACT

DC magnetization data for HgCo(NCS)4 confirm positive value of the zero-field splitting D-parameter. High-frequency and -field EPR gave gz = 2.05, gx = 2.16 and D/hc = 5.39 cm-1. The complex exhibits a field-induced slow magnetic relaxation with two relaxation modes and unusual temperature evolution of the relaxation time.

20.
Molecules ; 26(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670480

ABSTRACT

One-pot reaction of the Schiff base N,N'-ethylene bis(salicylaldimine) (H2L), CoCl2.6H2O, and [Ph2SnCl2] in acetone produces the mixed valence CoIICoIII2 compound [CoIICoIII2(µ-L)2(Ph)2(µ-Cl)2]·(CH3)2CO·H2O (1). Our recent study already revealed that the same reaction mixtures in methanol or ethanol produced a heterometallic SnIVCoIII (2) or monometallic CoIII complex (3), respectively. Comparison of these organometallic systems shows that the 2,1-intermetallic Ph shift occurs in any of those solvents, but their relevant structural features (mononuclear, dinuclear-heterometallic, and trinuclear mixed valence) are solvent dependent. Geometrical structural rotation is also discussed among the related organometallic CoIICoIII2 systems. The AC magnetic susceptibility measurements indicate that 1 is a single molecule magnet (SMM), exhibiting a field-induced slow magnetic relaxation with two modes. The relaxation time for the low-frequency channel is as slow as τ~0.6 s at T = 2.0 K and BDC = 1.0 T.


Subject(s)
Cobalt/chemistry , Magnets/chemistry , Solvents/chemistry , Crystallography, X-Ray , Electricity , Magnetic Fields , Molecular Conformation , Rotation , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL