Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(10)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34685909

ABSTRACT

In angiosperms, gametophytic apomixis (clonal reproduction through seeds) is strongly associated with polyploidy and hybridization. The trait is facultative and its expressivity is highly variable between genotypes. Here, we used an F1 progeny derived from diploid apomictic (aposporic) genotypes of Paspalum rufum and two F2 families, derived from F1 hybrids with different apospory expressivity (%AES), to analyze the influence of the environment and the transgenerational transmission of the trait. In addition, AFLP markers were developed in the F1 population to identify genomic regions associated with the %AES. Cytoembryological analyses showed that the %AES was significantly influenced by different environments, but remained stable across the years. F1 and F2 progenies showed a wide range of %AES variation, but most hybrids were not significantly different from the parental genotypes. Maternal and paternal genetic linkage maps were built covering the ten expected linkage groups (LG). A single-marker analysis detected at least one region of 5.7 cM on LG3 that was significantly associated with apospory expressivity. Our results underline the importance of environmental influence in modulating apospory expressivity and identified a genomic region associated with apospory expressivity at the diploid level.

2.
Sci Rep ; 9(1): 1093, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30705308

ABSTRACT

Cultivated olive, a typical fruit crop species of the semi-arid regions, could successfully face the new scenarios driven by the climate change through the selection of tolerant varieties to salt and drought stresses. In the present work, multidisciplinary approaches, including physiological, epigenetic and genetic studies, have been applied to clarify the salt tolerance mechanisms in olive. Four varieties (Koroneiki, Royal de Cazorla, Arbequina and Picual) and a related form (O. europaea subsp. cuspidata) were grown in a hydroponic system under different salt concentrations from zero to 200 mM. In order to verify the plant response under salt stress, photosynthesis, gas exchange and relative water content were measured at different time points, whereas chlorophyll and leaf concentration of Na+, K+ and Ca2+ ions, were quantified at 43 and 60 days after treatment, when stress symptoms became prominent. Methylation sensitive amplification polymorphism (MSAP) technique was used to assess the effects of salt stress on plant DNA methylation. Several fragments resulted differentially methylated among genotypes, treatments and time points. Real time quantitative PCR (RT-qPCR) analysis revealed significant expression changes related to plant response to salinity. Four genes (OePIP1.1, OePetD, OePI4Kg4 and OeXyla) were identified, as well as multiple retrotransposon elements usually targeted by methylation under stress conditions.


Subject(s)
Olea/genetics , Olea/metabolism , Plant Leaves/metabolism , Chlorophyll/metabolism , DNA Methylation/genetics , DNA Methylation/physiology , Gene Expression Regulation, Plant , Genotype , Photosynthesis/genetics , Photosynthesis/physiology , Plant Leaves/genetics
3.
Front Plant Sci ; 9: 389, 2018.
Article in English | MEDLINE | ID: mdl-29636765

ABSTRACT

Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance.

4.
Sci Rep ; 8(1): 3030, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445151

ABSTRACT

Apomixis (asexual reproduction through seeds) is considered a deviation of the sexual reproductive pathway leading to the development of clonal progenies genetically identical to the mother plant. Here we used the Methylation-Sensitive Amplification Polymorphism (MSAP) technique to characterize cytosine methylation patterns occurring in florets of sexual and aposporous Paspalum notatum genotypes, in order to identify epigenetically-controlled genes putatively involved in apomixis development. From twelve polymorphic MSAP-derived sequences, one (PN_6.6, later renamed PN_SCD1) was selected due to its relevant annotation and differential representation in apomictic and sexual floral transcriptome libraries. PN_SCD1 encodes the DENN domain/WD repeat-containing protein SCD1, which interacts with RAB GTPases- and/or MAPKs to promote specialized cell division, functions in clathrin-mediated membrane transport and acts as potential substrate receptor of CUL4 E3 ubiquitin ligases. Quantitative RT-PCR and comparative RNAseq analyses of laser microdissected nucellar cells confirmed PN_SCD1 upregulation in florets of apomictic plants and revealed that overexpression takes place just before the onset of apospory initials. Moreover, we found that several SCD1 molecular partners are expressed in P. notatum florets and upregulated in apomictic plants. Our results disclosed a specific vesicle trafficking molecular pathway epigenetically modulated during apomixis.


Subject(s)
Apomixis/genetics , Paspalum/genetics , Cysteine/metabolism , DNA Methylation , Flowers/genetics , Genotype , In Situ Hybridization , Nucleic Acid Amplification Techniques/methods , Paspalum/metabolism , Plant Proteins/genetics , Reproduction, Asexual/genetics , Seeds/genetics , Transcriptome
5.
Front Plant Sci ; 6: 514, 2015.
Article in English | MEDLINE | ID: mdl-26217365

ABSTRACT

All living organisms require iron (Fe) to carry out many crucial metabolic pathways. Despite its high concentrations in the geosphere, Fe bio-availability to plant roots can be very scarce. To cope with Fe shortage, plants can activate different strategies. For these reasons, we investigated Fe deficient Hordeum vulgare L. plants by monitoring growth, phytosiderophores (PS) release, iron content, and translocation, and DNA methylation, with respect to Fe sufficient ones. Reductions of plant growth, roots to shoots Fe translocation, and increases in PS release were found. Experiments on DNA methylation highlighted significant differences between fully and hemy-methylated sequences in Fe deficient plants, with respect to Fe sufficient plants. Eleven DNA bands differently methylated were found in starved plants. Of these, five sequences showed significant alignment to barley genes encoding for a glucosyltransferase, a putative acyl carrier protein, a peroxidase, a ß-glucosidase and a transcription factor containing a Homeodomin. A resupply experiment was carried out on starved barley re-fed at 13 days after sowing (DAS), and it showed that plants did not recover after Fe addition. In fact, Fe absorption and root to shoot translocation capacities were impaired. In addition, resupplied barley showed DNA methylation/demethylation patterns very similar to that of barley grown in Fe deprivation. This last finding is very encouraging because it indicates as these variations/modifications could be transmitted to progenies.

SELECTION OF CITATIONS
SEARCH DETAIL
...