Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 106(4): 947-957, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33472355

ABSTRACT

Since the dawn of medicine, scientists have carefully observed, modeled and interpreted the human body to improve healthcare. At the beginning there were drawings and paintings, now there is three-dimensional modeling. Moving from two-dimensional cultures and towards complex and relevant biomaterials, tissue-engineering approaches have been developed in order to create three-dimensional functional mimics of native organs. The bone marrow represents a challenging organ to reproduce because of its structure and composition that confer it unique biochemical and mechanical features to control hematopoiesis. Reproducing the human bone marrow niche is instrumental to answer the growing demand for human erythrocytes and platelets for fundamental studies and clinical applications in transfusion medicine. In this review, we discuss the latest culture techniques and technological approaches to obtain functional platelets and erythrocytes ex vivo. This is a rapidly evolving field that will define the future of targeted therapies for thrombocytopenia and anemia, but also a long-term promise for new approaches to the understanding and cure of hematologic diseases.


Subject(s)
Blood Platelets , Bone Marrow , Bone Marrow Cells , Cell Culture Techniques , Erythrocytes , Humans
2.
Theranostics ; 10(16): 7034-7052, 2020.
Article in English | MEDLINE | ID: mdl-32641977

ABSTRACT

This review provides an update for the international research community on the cell modeling tools that could accelerate the understanding of SARS-CoV-2 infection mechanisms and could thus speed up the development of vaccines and therapeutic agents against COVID-19. Many bioengineering groups are actively developing frontier tools that are capable of providing realistic three-dimensional (3D) models for biological research, including cell culture scaffolds, microfluidic chambers for the culture of tissue equivalents and organoids, and implantable windows for intravital imaging. Here, we review the most innovative study models based on these bioengineering tools in the context of virology and vaccinology. To make it easier for scientists working on SARS-CoV-2 to identify and apply specific tools, we discuss how they could accelerate the discovery and preclinical development of antiviral drugs and vaccines, compared to conventional models.


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Viral Vaccines/isolation & purification , Viral Vaccines/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/immunology , Bioengineering/methods , Bioengineering/trends , Bioreactors , COVID-19 , COVID-19 Vaccines , Cell Culture Techniques , Computer Simulation , Coronavirus Infections/immunology , Drug Discovery/methods , Drug Discovery/trends , Drug Evaluation/methods , Drug Evaluation/trends , Drug Resistance, Viral , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Models, Biological , Organoids/cytology , Organoids/virology , Pneumonia, Viral/immunology , SARS-CoV-2 , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL
...