Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Dermatol ; 27(3): 210-e53, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27188772

ABSTRACT

BACKGROUND: Stiff skin syndrome and systemic or localized scleroderma are cutaneous disorders characterized by dermal fibrosis and present clinically with induration of the skin, with or without joint, internal organ or vascular involvement. OBJECTIVES: To provide clinical, histological and preliminary genetic analysis of two West Highland white terrier siblings presenting with indurated skin resembling stiff skin syndrome in humans. ANIMALS: Two client owned full sibling West Highland white terriers from two different litters. METHODS: Clinical examination, histopathological examination and whole genome sequencing analysis of affected and unaffected West Highland white terriers. RESULTS: Affected dogs exhibited markedly indurated skin that was attached firmly to the underlying tissue and incomplete closure of the mouth and eyes. No abnormalities were found by neurological or orthopaedic examination, radiographs of the head or whole body computed tomography. Histologically, the dermis and pannicular septa were thickened by a marked increase in coarse collagen fibres and a mild to moderate increase in collagen fibre diameter. The syndrome most likely follows an autosomal recessive mode of inheritance. The sequence analysis did not reveal any obvious causative variant in the investigated candidate genes ADAMTSL2 and FBN1. CONCLUSION AND CLINICAL IMPORTANCE: The clinical phenotype and histopathological features of two West Highland white terrier siblings resembled stiff skin syndrome in humans. Unlike in humans, or previously described beagles with stiff skin, there was no restriction of joint mobility. Genetic analysis did not detect a candidate causative variant and warrants further research.

2.
Stem Cells Dev ; 19(5): 719-29, 2010 May.
Article in English | MEDLINE | ID: mdl-20143956

ABSTRACT

We demonstrated previously that administration of mesenchymal stromal cells (MSCs) after renal ischemia/reperfusion injury (IRI) in rats protected renal function and hastened repair through complex paracrine mechanisms. Here we investigated kidney-protective actions of MSCs in a porcine IRI model that may have relevance to human acute kidney injury (AKI). Groups of female pigs with bilateral IRI were infused with autologous or male allogeneic MSCs. No acute or late complications were observed, but unexpectedly, MSC therapy also had no beneficial effects on kidney function and histology. In vitro, we demonstrated substantial functional and phenotypic overlaps between rodent, human, and porcine MSCs, all of which exhibited trilineage differentiation, characteristic antigen profiles, and secretion of renoprotective vascular endothelial growth factor (VEGF)-A and insulin-like growth factor-1 (IGF-1). However, in striking contrast to human MSCs, porcine MSCs failed to inhibit the mixed lymphocyte reaction (MLR) and induced robust production of proinflammatory interleukin-6 (IL-6). In summary, in contrast to rodent models, treatment of porcine IRI with MSCs was not kidney-protective. This, we conclude, is due to the fact that porcine MSCs exert inadequate immune-modulating effects, further demonstrating that successful therapy of IRI with MSCs critically depends on their anti-inflammatory actions. As a consequence, treatment of AKI with MSCs is not informative regarding the investigation of the underlying mechanisms in this large animal model. We expect, however, that the treatment of human IRI of the kidney with immune-modulating MSCs will be as effective as in rodent models.


Subject(s)
Acute Kidney Injury/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Animals , Female , Humans , Interleukin-6/biosynthesis , Lymphocyte Culture Test, Mixed , Male , Rats , Reperfusion Injury , Species Specificity , Swine , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...