Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Crohns Colitis ; 15(11): 1908-1919, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-33891011

ABSTRACT

BACKGROUND AND AIMS: Very early onset inflammatory bowel disease [VEOIBD] is characterized by intestinal inflammation affecting infants and children less than 6 years of age. To date, over 60 monogenic aetiologies of VEOIBD have been identified, many characterized by highly penetrant recessive or dominant variants in underlying immune and/or epithelial pathways. We sought to identify the genetic cause of VEOIBD in a subset of patients with a unique clinical presentation. METHODS: Whole exome sequencing was performed on five families with ten patients who presented with a similar constellation of symptoms including medically refractory infantile-onset IBD, bilateral sensorineural hearing loss and, in the majority, recurrent infections. Genetic aetiologies of VEOIBD were assessed and Sanger sequencing was performed to confirm novel genetic findings. Western analysis on peripheral blood mononuclear cells and functional studies with epithelial cell lines were employed. RESULTS: In each of the ten patients, we identified damaging heterozygous or biallelic variants in the Syntaxin-Binding Protein 3 gene [STXBP3], a protein known to regulate intracellular vesicular trafficking in the syntaxin-binding protein family of molecules, but not associated to date with either VEOIBD or sensorineural hearing loss. These mutations interfere with either intron splicing or protein stability and lead to reduced STXBP3 protein expression. Knock-down of STXBP3 in CaCo2 cells resulted in defects in cell polarity. CONCLUSION: Overall, we describe a novel genetic syndrome and identify a critical role for STXBP3 in VEOIBD, sensorineural hearing loss and immune dysregulation.


Subject(s)
Hearing Loss, Sensorineural/genetics , Immune System Diseases/genetics , Inflammatory Bowel Diseases/genetics , Qa-SNARE Proteins/analysis , Age of Onset , Female , Genetic Variation/genetics , Hearing Loss, Sensorineural/epidemiology , Humans , Immune System Diseases/epidemiology , Infant, Newborn , Inflammatory Bowel Diseases/epidemiology , Male , Qa-SNARE Proteins/genetics , Exome Sequencing
2.
PLoS One ; 16(3): e0248889, 2021.
Article in English | MEDLINE | ID: mdl-33755690

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive and debilitating lung disease with large unmet medical need and few treatment options. We describe an analysis connecting single cell gene expression with bulk gene expression-based subsetting of patient cohorts to identify IPF patient subsets with different underlying pathogenesis and cellular changes. We reproduced earlier findings indicating the existence of two major subsets in IPF and showed that these subsets display different alterations in cellular composition of the lung. We developed classifiers based on the cellular changes in disease to distinguish subsets. Specifically, we showed that one subset of IPF patients had significant increases in gene signature scores for myeloid cells versus a second subset that had significantly increased gene signature scores for ciliated epithelial cells, suggesting a differential pathogenesis among IPF subsets. Ligand-receptor analyses suggested there was a monocyte-macrophage chemoattractant axis (including potentially CCL2-CCR2 and CCL17-CCR4) among the myeloid-enriched IPF subset and a ciliated epithelium-derived chemokine axis (e.g. CCL15) among the ciliated epithelium-enriched IPF subset. We also found that these IPF subsets had differential expression of pirfenidone-responsive genes suggesting that our findings may provide an approach to identify patients with differential responses to pirfenidone and other drugs. We believe this work is an important step towards targeted therapies and biomarkers of response.


Subject(s)
Gene Expression Regulation , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology , Single-Cell Analysis , Biomarkers/metabolism , Chemokines/metabolism , Cluster Analysis , Cohort Studies , Epithelium/drug effects , Epithelium/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Ligands , Lung/drug effects , Machine Learning , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Pericytes/drug effects , Pericytes/pathology , Pyridones/pharmacology , Receptors, Cell Surface/metabolism
3.
Genome Biol ; 19(1): 173, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30359302

ABSTRACT

Functional characterization of the noncoding genome is essential for biological understanding of gene regulation and disease. Here, we introduce the computational framework PINES (Phenotype-Informed Noncoding Element Scoring), which predicts the functional impact of noncoding variants by integrating epigenetic annotations in a phenotype-dependent manner. PINES enables analyses to be customized towards genomic annotations from cell types of the highest relevance given the phenotype of interest. We illustrate that PINES identifies functional noncoding variation more accurately than methods that do not use phenotype-weighted knowledge, while at the same time being flexible and easy to use via a dedicated web portal.


Subject(s)
Algorithms , DNA, Intergenic/genetics , Genetic Variation , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Genetic Loci , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/genetics , Molecular Sequence Annotation , Parkinson Disease/genetics , Phenotype , Risk Factors
4.
Mol Neuropsychiatry ; 2(4): 173-184, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28277564

ABSTRACT

To localize genetic variation affecting risk for psychotic disorders in the population of Palau, we genotyped DNA samples from 203 Palauan individuals diagnosed with psychotic disorders, broadly defined, and 125 control subjects using a genome-wide single nucleotide polymorphism array. Palau has unique features advantageous for this study: due to its population history, Palauans are substantially interrelated; affected individuals often, but not always, cluster in families; and we have essentially complete ascertainment of affected individuals. To localize risk variants to genomic regions, we evaluated long-shared haplotypes, ≥10 Mb, identifying clusters of affected individuals who share such haplotypes. This extensive sharing, typically identical by descent, was significantly greater in cases than population controls, even after controlling for relatedness. Several regions of the genome exhibited substantial excess of shared haplotypes for affected individuals, including 3p21, 3p12, 4q28, and 5q23-q31. Two of these regions, 4q28 and 5q23-q31, showed significant linkage by traditional LOD score analysis and could harbor variants of more sizeable risk for psychosis or a multiplicity of risk variants. The pattern of haplotype sharing in 4q28 highlights PCDH10, encoding a cadherin-related neuronal receptor, as possibly involved in risk.

5.
Am J Hum Genet ; 98(5): 857-868, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27087321

ABSTRACT

One goal of human genetics is to understand the genetic basis of disease, a challenge for diseases of complex inheritance because risk alleles are few relative to the vast set of benign variants. Risk variants are often sought by association studies in which allele frequencies in case subjects are contrasted with those from population-based samples used as control subjects. In an ideal world we would know population-level allele frequencies, releasing researchers to focus on case subjects. We argue this ideal is possible, at least theoretically, and we outline a path to achieving it in reality. If such a resource were to exist, it would yield ample savings and would facilitate the effective use of data repositories by removing administrative and technical barriers. We call this concept the Universal Control Repository Network (UNICORN), a means to perform association analyses without necessitating direct access to individual-level control data. Our approach to UNICORN uses existing genetic resources and various statistical tools to analyze these data, including hierarchical clustering with spectral analysis of ancestry; and empirical Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific allele frequencies. We demonstrate our approach using tens of thousands of control subjects from studies of Crohn disease, showing how it controls false positives, provides power similar to that achieved when all control data are directly accessible, and enhances power when control data are limiting or even imperfectly matched ancestrally. These results highlight how UNICORN can enable reliable, powerful, and convenient genetic association analyses without access to the individual-level data.


Subject(s)
Disease/genetics , Genetic Predisposition to Disease , Genetics, Population , Heredity/genetics , Bayes Theorem , Case-Control Studies , Gene Frequency , Genetic Linkage , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Software
6.
Nat Genet ; 46(8): 881-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25038753

ABSTRACT

A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (herein termed autism), the nature of the allelic spectrum is uncertain. Individual risk-associated genes have been identified from rare variation, especially de novo mutations. From this evidence, one might conclude that rare variation dominates the allelic spectrum in autism, yet recent studies show that common variation, individually of small effect, has substantial impact en masse. At issue is how much of an impact relative to rare variation this common variation has. Using a unique epidemiological sample from Sweden, new methods that distinguish total narrow-sense heritability from that due to common variation and synthesis of results from other studies, we reach several conclusions about autism's genetic architecture: its narrow-sense heritability is ∼52.4%, with most due to common variation, and rare de novo mutations contribute substantially to individual liability, yet their contribution to variance in liability, 2.6%, is modest compared to that for heritable variation.


Subject(s)
Autistic Disorder/genetics , Mutation , Adolescent , Adult , Aged , Alleles , Child , Genetic Predisposition to Disease , Humans , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Sweden , Young Adult
7.
PLoS Genet ; 9(4): e1003443, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23593035

ABSTRACT

We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders (ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the distribution of rare variation was similar for data from different centers. This proved straightforward by filtering called variants by fraction of missing data, read depth, and balance of alternative to reference reads. Results were evaluated using seven samples sequenced at both centers and by results from the association study. Next we addressed how the data and/or results from the centers should be combined. Gene-based analyses of association was an obvious choice, but should statistics for association be combined across centers (meta-analysis) or should data be combined and then analyzed (mega-analysis)? Because of the nature of many gene-based tests, we showed by theory and simulations that mega-analysis has better power than meta-analysis. Finally, before analyzing the data for association, we explored the impact of population structure on rare variant analysis in these data. Like other recent studies, we found evidence that population structure can confound case-control studies by the clustering of rare variants in ancestry space; yet, unlike some recent studies, for these data we found that principal component-based analyses were sufficient to control for ancestry and produce test statistics with appropriate distributions. After using a variety of gene-based tests and both meta- and mega-analysis, we found no new risk genes for ASD in this sample. Our results suggest that standard gene-based tests will require much larger samples of cases and controls before being effective for gene discovery, even for a disorder like ASD.


Subject(s)
Child Development Disorders, Pervasive/genetics , Exome , Genome-Wide Association Study , Case-Control Studies , Child , Child Development Disorders, Pervasive/physiopathology , Genetic Predisposition to Disease , Genetic Variation , Humans , Population Control , Sequence Analysis, DNA , Software
SELECTION OF CITATIONS
SEARCH DETAIL