Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 12 23.
Article in English | MEDLINE | ID: mdl-36562477

ABSTRACT

Ribbon synapses of cochlear inner hair cells (IHCs) are specialized to indefatigably transmit sound information at high rates. To understand the underlying mechanisms, structure-function analysis of the active zone (AZ) of these synapses is essential. Previous electron microscopy studies of synaptic vesicle (SV) dynamics at the IHC AZ used potassium stimulation, which limited the temporal resolution to minutes. Here, we established optogenetic IHC stimulation followed by quick freezing within milliseconds and electron tomography to study the ultrastructure of functional synapse states with good temporal resolution in mice. We characterized optogenetic IHC stimulation by patch-clamp recordings from IHCs and postsynaptic boutons revealing robust IHC depolarization and neurotransmitter release. Ultrastructurally, the number of docked SVs increased upon short (17-25 ms) and long (48-76 ms) light stimulation paradigms. We did not observe enlarged SVs or other morphological correlates of homotypic fusion events. Our results indicate a rapid recruitment of SVs to the docked state upon stimulation and suggest that univesicular release prevails as the quantal mechanism of exocytosis at IHC ribbon synapses.


Subject(s)
Electron Microscope Tomography , Optogenetics , Mice , Animals , Synapses/physiology , Synaptic Vesicles/ultrastructure , Hair Cells, Auditory, Inner/physiology , Exocytosis/physiology
2.
Nat Commun ; 9(1): 1750, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717130

ABSTRACT

Optogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum. We focus our functional analysis on the fast-switching, red light-activated Chrimson variants, because red light has lower light scattering and marginal phototoxicity in tissues. We show paradigmatically for neurons of the cerebral cortex and the auditory nerve that the fast Chrimson mutants enable neural stimulation with firing frequencies of several hundred Hz. They drive spiking at high rates and temporal fidelity with low thresholds for stimulus intensity and duration. Optical cochlear implants restore auditory nerve activity in deaf mice. This demonstrates that the mutants facilitate neuroscience research and future medical applications such as hearing restoration.


Subject(s)
Action Potentials , Auditory Pathways/physiology , Neurons/physiology , Optogenetics/methods , Animals , Calcium/metabolism , Cell Line, Tumor , Cells, Cultured , Hearing/physiology , Humans , Mice , Mutation , Patch-Clamp Techniques , Permeability , Rats , Rats, Sprague-Dawley , Signal Transduction , Xenopus laevis
3.
ACS Nano ; 9(11): 10571-9, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26381363

ABSTRACT

Viruses package their genome in a robust protein coat to protect it during transmission between cells and organisms. In a reaction termed uncoating, the virus is progressively weakened during entry into cells. At the end of the uncoating process the genome separates, becomes transcriptionally active, and initiates the production of progeny. Here, we triggered the disruption of single human adenovirus capsids with atomic force microscopy and followed genome exposure by single-molecule fluorescence microscopy. This method allowed the comparison of immature (noninfectious) and mature (infectious) adenovirus particles. We observed two condensation states of the fluorescently labeled genome, a feature of the virus that may be related to infectivity. Beyond tracking the unpacking of virus genomes, this approach may find application in testing the cargo release of bioinspired delivery vehicles.


Subject(s)
Adenoviridae/genetics , Adenoviridae/physiology , Genome, Viral , Virus Assembly , Benzoxazoles/chemistry , Capsid/metabolism , Cell Line, Tumor , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence , Quinolinium Compounds/chemistry
4.
Nat Commun ; 6: 7523, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26146072

ABSTRACT

Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.


Subject(s)
Actin Cytoskeleton/physiology , Caenorhabditis elegans/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Neuropeptides/metabolism , Sarcomeres/metabolism , Animals , COS Cells , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chlorocebus aethiops , Gene Expression Regulation/physiology , Microscopy, Fluorescence , Neuropeptides/genetics , Promoter Regions, Genetic , Sarcomeres/chemistry , Sarcomeres/genetics
5.
Nano Lett ; 14(10): 5656-61, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25247753

ABSTRACT

Inorganic carbon nanomaterials, also called carbon nanodots, exhibit a strong photoluminescence with unusual properties and, thus, have been the focus of intense research. Nonetheless, the origin of their photoluminescence is still unclear and the subject of scientific debates. Here, we present a single particle comprehensive study of carbon nanodot photoluminescence, which combines emission and lifetime spectroscopy, defocused emission dipole imaging, azimuthally polarized excitation dipole scanning, nanocavity-based quantum yield measurements, high resolution transmission electron microscopy, and atomic force microscopy. We find that photoluminescent carbon nanodots behave as electric dipoles, both in absorption and emission, and that their emission originates from the recombination of photogenerated charges on defect centers involving a strong coupling between the electronic transition and collective vibrations of the lattice structure.

6.
Rev Sci Instrum ; 84(11): 113707, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24289404

ABSTRACT

Although atomic force microscopy is often the method of choice to probe the mechanical response of (sub)micrometer sized biomaterials, the lowest force that can be reliably controlled is limited to ≈0.1 nN. For soft biological samples, like cells, such forces can already lead to a strain large enough to enter the non-elastic deformation regime. To be able to investigate the response of single cells at lower forces we developed a vertical optical trap. The force can be controlled down to single piconewtons and most of the advantages of atomic force microscopy are maintained, such as the symmetrical application of forces at a wide range of loading rates. Typical consequences of moving the focus in the vertical direction, like the interferometric effect between the bead and the coverslip and a shift of focus, were quantified and found to have negligible effects on our measurements. With a fast responding force feedback loop we can achieve deformation rates as high as 50 µm/s, which allow the investigation of the elastic and viscous components of very soft samples. The potential of the vertical optical trap is demonstrated by measuring the linearity of the response of single cells at very low forces and a high bandwidth of deformation rates.


Subject(s)
Materials Testing/instrumentation , Mechanical Phenomena , Optical Tweezers , Cell Survival , Equipment Design , Feedback , Interferometry
7.
PLoS One ; 7(9): e45297, 2012.
Article in English | MEDLINE | ID: mdl-23028915

ABSTRACT

The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.


Subject(s)
Actins/physiology , Fibroblasts/physiology , Animals , Cell Adhesion , Elastic Modulus , Fibroblasts/cytology , Mice , Microscopy, Atomic Force , Models, Biological , NIH 3T3 Cells , Optical Tweezers , Single-Cell Analysis , Stress, Mechanical , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...