Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 944: 173764, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880147

ABSTRACT

Soluble fertilizers, particularly potash, are often prohibitively expensive or unavailable in Africa. Consequently, alternatives such as powdered silicate rocks, both raw and hydrothermally treated, are being explored as potential solutions, especially for acidic tropical soils. This study investigates the possible impacts of these rocks (syenite) on groundwater quality, which is a critical factor for agricultural activities. The powdered raw material underwent chemical and mineralogical characterization, including X-ray fluorescence and X-ray diffraction, followed by quantitative evaluation of materials by scanning electron microscopy. Both raw and 46 hydrothermally treated materials were subjected to sequential leaching cycles (1, 24, and 192 h) using deionized water, and the resulting leachates were analyzed by inductively coupled plasma atomic emission spectroscopy. Parameters such as electrical conductivity, total dissolved solids, soluble sodium percentage, sodium adsorption ratio, magnesium hazard, Kelly's ratio, and permeability index were also evaluated. Results from the 47 leachates indicated that 64 % of the samples exhibited excellent to acceptable water quality for irrigation purposes across all parameters. Conversely, 6 % to 13 % fell into the doubtful category, and 2 % to 24 % were classified as unsuitable. Consistency index and ratios of approximately 0.07 and 0.042, respectively, were determined using multi-criteria decision analysis (analytic hierarchy process: AHP), confirming the coherence of the decision and pairwise comparison matrix. The weighted coefficients for each criterion ranged from 0.06 to 0.2. Consequently, the optimal sample (Treatment 23) was identified, showing a hydrothermal temperature of 176 °C, a time of 3.9 h, a normality of 4.62, and a liquid-solid ratio of 0.24. This treatment met all high-water quality standards, including low salinity and sodium hazard, as corroborated by the US salinity laboratory and Wilcox diagrams. Furthermore, due to their nutrient release, low concentration of toxic elements, and effective buffering capacity (pH âˆ¼ 10.6), these powdered syenites are suitable for application in acidic soils.

2.
J Environ Manage ; 359: 120929, 2024 May.
Article in English | MEDLINE | ID: mdl-38669878

ABSTRACT

Understanding the variations in the geochemical composition of phosphogypsum (PG) destined for storage or valorization is crucial for assessing the safety and operational efficacy of waste management. The present study aimed to investigate the environmental behavior of PG using different leaching tests and to evaluate its geochemical behavior using geochemical modeling. Regarding the chemical characterization, the PG samples were predominantly composed of Ca (23.03-23.35 wt%), S (17.65-17.71 wt%), and Si (0.75-0.82 wt%). Mineralogically, the PG samples were primarily composed of gypsum (94.2-95.9 wt%) and quartz (1.67-1.76 wt%). Moreover, the automated mineralogy revealed the presence of apatite, fluorine and malladrite phases. The overall findings of the leaching tests showed that PG could be considered as non-hazardous material according to US Environmental Protection Agency limitations. However, a high leachability of elements at a L/S of 2 under acidic conditions ([Ca] = 166.52-199.87 mg/L, [S] = 207.9-233.59 mg/L, [F] = 248.62-286.65 mg/L) is observed. The weathering cell test revealed a considerable cumulative concentration over 90 days indicating potential adverse effects on the nearby environment (S: 8000 mg/kg, F: 3000 mg/kg, P: 700 mg/kg). Based on these results, it could be estimated that the surface storage of PG could have a serious impact on the environment. In this context, a simulation model was developed based on weathering cell results showed encouraging results for treating PG leachate using CaO before its disposal. Additionally, PHREEQC was used to analyze the speciation of major elements and calculate mineral phase saturation indices in PG leaching solutions. The findings revealed pH-dependent speciation for Ca, S, P, and F. The study identified gypsum, anhydrite, and bassanite as the key phases governing the dissolution of these elements.


Subject(s)
Calcium Sulfate , Phosphorus , Calcium Sulfate/chemistry , Calcium Sulfate/analysis , Phosphorus/analysis , Phosphorus/chemistry , Waste Management/methods
3.
Environ Sci Pollut Res Int ; 30(15): 43778-43794, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36662430

ABSTRACT

Phosphoric acid manufacturing generates large amounts of phosphogypsum (PG); a by-product generally disposed in the surface or evacuated in the seawater without any pretreatment. Phosphogypsum may host non-negligible amounts of valuable elements such as rare earth elements (REEs), which are critical elements on the global market. Surface disposal of PG may be a sustainable option to allow further processing in order to recover valuable elements. However, surface disposal exposes PG to atmospheric conditions (e.g., water, oxygen) which may increase their reactivity and accelerate the release rate of chemical species. This study aims to evaluate the trace element release rate from PG at atmospheric conditions. The studied PG samples were collected from a Moroccan phosphate treatment plant. The samples were characterized for their (i) chemical composition using inductively coupled plasma optical emission spectrometry (ICP-OES) for major elements and inductively coupled plasma mass spectrometry (ICP-MS) for trace elements; (ii) mineralogical composition by X-ray diffraction (XRD), scanning electron microscope equipped with energy-dispersive spectrometer (SEM-EDS), laser-induced breakdown spectroscopy (LIBS), and the mineral chemical composition was analyzed by electron probe microanalyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS); and (iii) chemical species release rate using leaching tests over 24 h at 25 and 60 °C. Chemically, the PG samples were mainly composed of Ca (23.03-23.35 wt.%), S (17.65-17.71 wt.%), and Si (0.75-0.82 wt.%), and non-negligible amounts of trace elements: REE (344-349 ppm), Cd (3.5-7.4 ppm), U (9.3-27.4 ppm). Mineralogically, the PGs are mainly formed by gypsum (94.2-95.9 wt.%) and quartz (1.67-1.76 wt.%). In terms of chemical species release, the PGs showed a higher reactivity at 60 °C compared to room temperature with a higher release rate at the beginning of the leaching tests. Quantitatively, the PG samples released 3.57-4.11 µg/L/day of REE, 3.18-17.29 µg/L/day of U, and 1.67-5.49 µg/L/day of Cd. Based on the leaching results, we concluded that the trace elements (e.g., U, Cd, REE) are incorporated in PG crystal lattice, which may explain their low concentrations in the leachates. Consequently, total digestion of PG matrix is required to solubilize REE.


Subject(s)
Trace Elements , Calcium Sulfate/chemistry , Cadmium , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL
...