Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Pharmacother ; 157: 114078, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481402

ABSTRACT

Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.


Subject(s)
Cytochrome P-450 CYP3A , Organic Anion Transporters , Humans , Cytochrome P-450 CYP3A/metabolism , Glucuronides , Luteolin/pharmacology , Serum Albumin, Human/metabolism , Sulfates/metabolism , Organic Anion Transporters/metabolism , Cytochrome P-450 Enzyme System/metabolism , Flavonoids/pharmacology , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C19/metabolism
2.
Biomed Pharmacother ; 151: 113136, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35594715

ABSTRACT

Resveratrol (RES) is a widely-known natural polyphenol which is also contained by several dietary supplements. Large doses of RES can result in high micromolar levels of its sulfate and glucuronide conjugates in the circulation, due to the high presystemic metabolism of the parent polyphenol. Pharmacokinetic interactions of RES have been extensively studied, while only limited data are available regarding its metabolites. Therefore, in the current study, we examined the interactions of resveratrol-3-sulfate (R3S), resveratrol-3-glucuronide, and dihydroresveratrol (DHR; a metabolite produced by the colon microbiota) with human serum albumin (HSA), cytochrome P450 (CYP) enzymes, and organic anion transporting polypeptides (OATP) employing in vitro models. Our results demonstrated that R3S and R3G may play a major role in the RES-induced pharmacokinetic interactions: (1) R3S can strongly displace the site I marker warfarin from HSA; (2) R3G showed similarly strong inhibitory action on CYP3A4 to RES; (3) R3S proved to be similarly strong (OATP1B1/3) or even stronger (OATP1A2 and OATP2B1) inhibitor of OATPs tested than RES, while R3G and RES showed comparable inhibitory actions on OATP2B1.


Subject(s)
Cytochrome P-450 Enzyme System , Organic Anion Transporters , Resveratrol , Serum Albumin , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/metabolism , Glucuronides/pharmacology , Humans , Organic Anion Transporters/drug effects , Organic Anion Transporters/metabolism , Polyphenols , Resveratrol/pharmacology , Serum Albumin/drug effects , Serum Albumin/metabolism , Serum Albumin, Human/metabolism , Stilbenes/pharmacology
3.
Biomed Pharmacother ; 146: 112513, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34915414

ABSTRACT

The interactions of four sulfonylated Phe(3-Am)-derived inhibitors (MI-432, MI-463, MI-482 and MI-1900) of type II transmembrane serine proteases (TTSP) such as transmembrane protease serine 2 (TMPRSS2) were examined with serum albumin and cytochrome P450 (CYP) isoenzymes. Complex formation with albumin was investigated using fluorescence spectroscopy. Furthermore, microsomal hepatic CYP1A2, 2C9, 2C19 and 3A4 activities in presence of these inhibitors were determined using fluorometric assays. The inhibitory effects of these compounds on human recombinant CYP3A4 enzyme were also examined. In addition, microsomal stability assays (60-min long) were performed using an UPLC-MS/MS method to determine depletion percentage values of each compound. The inhibitors showed no or only weak interactions with albumin, and did not inhibit CYP1A2, 2C9 and 2C19. However, the compounds tested proved to be potent inhibitors of CYP3A4 in both assays performed. Within one hour, 20%, 12%, 14% and 25% of inhibitors MI-432, MI-463, MI-482 and MI-1900, respectively, were degraded. As essential host cell factor for the replication of the pandemic SARS-CoV-2, the TTSP TMPRSS2 emerged as an important target in drug design. Our study provides further preclinical data on the characterization of this type of inhibitors for numerous trypsin-like serine proteases.


Subject(s)
Antiviral Agents/metabolism , Cytochrome P-450 Enzyme System/metabolism , Protease Inhibitors/metabolism , Serine Endopeptidases/metabolism , Serum Albumin, Human/metabolism , Antiviral Agents/analysis , Antiviral Agents/pharmacology , Dose-Response Relationship, Drug , Humans , Isoenzymes/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Protease Inhibitors/analysis , Protease Inhibitors/pharmacology , Protein Binding/physiology , Serine Endopeptidases/analysis , Spectrometry, Fluorescence/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL