Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Physiol Biochem ; 56(4): 436-448, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36037065

ABSTRACT

BACKGROUND/AIMS: It is unknown whether cancer stem cells respond differentially to treatment compared with progeny, potentially providing therapeutic vulnerabilities. Our program pioneered use of ultra-high single dose radiotherapy, which cures diverse metastatic diseases at a higher rate (90-95%) than conventional fractionation (~65%). Single dose radiotherapy engages a distinct biology involving microvascular acid sphingomyelinase/ceramide signaling, which, via NADPH oxidase-2-dependent perfusion defects, initiates an adaptive tumor SUMO Stress Response that globally-inactivates homologous recombination repair of double stand breaks, conferring cure. Accumulating data show diverse stem cells display heightened-dependence on homologous recombination repair to repair resolve double stand breaks. METHODS: Here we use colorectal cancer patient-derived xenografts containing logarithmically-increased Lgr5+ stem cells to explore whether optimizing engagement of this acid sphingomyelinase dependent biology enhances stem cell dependent tumor cure. RESULTS: We show radioresistant colorectal cancer patient-derived xenograft CLR27-2 contains radioresistant microvasculature and stem cells, whereas radiosensitive colorectal cancer patient-derived xenograft CLR1-1 contains radiosensitive microvasculature and stem cells. Pharmacologic or gene therapy enhancement of single dose radiotherapy-induced acid sphingomyelinase/ceramide-mediated microvascular dysfunction dramatically sensitizes CLR27-2 homologous recombination repair inactivation, converting Lgr5+ cells from the most resistant to most sensitive patient-derived xenograft population, yielding tumor cure. CONCLUSION: We posit homologous recombination repair represents a vulnerability determining colorectal cancer stem cell fate, approachable therapeutically using single dose radiotherapy.


Subject(s)
Colorectal Neoplasms , Vascular System Injuries , Animals , Ceramides , Colorectal Neoplasms/genetics , Disease Models, Animal , Humans , Neoplastic Stem Cells , Sphingomyelin Phosphodiesterase/genetics
2.
Cancer Res ; 82(12): 2298-2312, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35472075

ABSTRACT

Identifying colorectal cancer patient populations responsive to chemotherapy or chemoradiation therapy before surgery remains a challenge. Recently validated mouse protocols for organoid irradiation employ the single hit multi-target (SHMT) algorithm, which yields a single value, the D0, as a measure of inherent tissue radiosensitivity. Here, we translate these protocols to human tissue to evaluate radioresponsiveness of patient-derived organoids (PDO) generated from normal human intestines and rectal tumors of patients undergoing neoadjuvant therapy. While PDOs from adenomas with a logarithmically expanded Lgr5+ intestinal stem cell population retain the radioresistant phenotype of normal colorectal PDOs, malignant transformation yields PDOs from a large patient subpopulation displaying marked radiosensitivity due to reduced homologous recombination-mediated DNA repair. A proof-of-principle pilot clinical trial demonstrated that rectal cancer patient responses to neoadjuvant chemoradiation, including complete response, correlate closely with their PDO D0 values. Overall, upon transformation to colorectal adenocarcinoma, broad radiation sensitivity occurs in a large subset of patients that can be identified using SHMT analysis of PDO radiation responses. SIGNIFICANCE: Analysis of inherent tissue radiosensitivity of patient-derived organoids may provide a readout predictive of neoadjuvant therapy response to radiation in rectal cancer, potentially allowing pretreatment stratification of patients likely to benefit from this approach.


Subject(s)
Colorectal Neoplasms , Rectal Neoplasms , Animals , Cell Transformation, Neoplastic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/radiotherapy , Humans , Mice , Organoids/pathology , Radiation Tolerance , Rectal Neoplasms/pathology , Rectum/pathology
3.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: mdl-33724956

ABSTRACT

After 9/11, threat of nuclear attack on American urban centers prompted government agencies to develop medical radiation countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS) and higher-dose gastrointestinal acute radiation syndrome (GI-ARS) lethality. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS in preclinical models, no mitigator potentially deliverable under mass casualty conditions preserves GI tract. Here, we report generation of an anti-ceramide 6B5 single-chain variable fragment (scFv) and show that s.c. 6B5 scFv delivery at 24 hours after a 90% lethal GI-ARS dose of 15 Gy mitigated mouse lethality, despite administration after DNA repair was complete. We defined an alternate target to DNA repair, an evolving pattern of ceramide-mediated endothelial apoptosis after radiation, which when disrupted by 6B5 scFv, initiates a durable program of tissue repair, permitting crypt, organ, and mouse survival. We posit that successful preclinical development will render anti-ceramide 6B5 scFv a candidate for inclusion in the Strategic National Stockpile for distribution after a radiation catastrophe.


Subject(s)
Acute Radiation Syndrome/drug therapy , Ceramides/immunology , Gastrointestinal Diseases/drug therapy , Intestine, Small/drug effects , Intestine, Small/radiation effects , Single-Chain Antibodies/pharmacology , Acute Radiation Syndrome/mortality , Animals , DNA Repair , Gastrointestinal Diseases/mortality , Humans , Injections, Subcutaneous , Intestine, Small/pathology , Jurkat Cells/drug effects , Jurkat Cells/radiation effects , Mice , Single-Chain Antibodies/therapeutic use
4.
Cancer Res ; 80(5): 1219-1227, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31690670

ABSTRACT

Tissue survival responses to ionizing radiation are nonlinear with dose, rather yielding tissue-specific descending curves that impede straightforward analysis of biologic effects. Apoptotic cell death often occurs at low doses, while at clinically relevant intermediate doses, double-strand break misrepair yields mitotic death that determines outcome. As researchers frequently use a single low dose for experimentation, such strategies may inaccurately depict inherent tissue responses. Cutting edge radiobiology has adopted full dose survival profiling and devised mathematical algorithms to fit curves to observed data to generate highly reproducible numerical data that accurately define clinically relevant inherent radiosensitivities. Here, we established a protocol for irradiating organoids that delivers radiation profiles simulating the organ of origin. This technique yielded highly similar dose-survival curves of small and large intestinal crypts in vivo and their cognate organoids analyzed by the single-hit multi-target (SHMT) algorithm, outcomes reflecting the inherent radiation profile of their respective Lgr5+ stem cell populations. As this technological advance is quantitative, it will be useful for accurate evaluation of intestinal (patho)physiology and drug screening. SIGNIFICANCE: These findings establish standards for irradiating organoids that deliver radiation profiles that phenocopy the organ of origin.See related commentary by Muschel et al., p. 927.


Subject(s)
Organoids , Stem Cells , Intestines , Radiation Tolerance , Radiation, Ionizing
5.
Cancers (Basel) ; 11(8)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366136

ABSTRACT

Lynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, caused by heterozygous mutations in the mismatch repair (MMR) genes. Biallelic mutations in these genes lead however, to constitutive mismatch repair deficiency (CMMRD). In this study, we follow the diagnostic journey of a 12-year old patient with CRC, with a clinical phenotype overlapping CMMRD. We perform molecular and functional assays to discard a CMMRD diagnosis then identify by exome sequencing and validation in a cohort of 134 LS patients, a candidate variant in the MLH1 UTR region in homozygosis. We propose that this variant, together with other candidates, could be responsible for age-of-onset modulation. Our data support the idea that low-risk modifier alleles may influence early development of cancer in LS leading to a LS-to-CMMRD phenotypic continuum. Therefore, it is essential that larger efforts are directed to the identification and study of these genetic modifiers, in order to provide optimal cancer prevention strategies to these patients.

6.
Gastroenterology ; 157(2): 421-431, 2019 08.
Article in English | MEDLINE | ID: mdl-30998989

ABSTRACT

BACKGROUND & AIMS: Approximately 75% of patients with suspected Lynch syndrome carry variants in MLH1 or MSH2, proteins encoded by these genes are required for DNA mismatch repair (MMR). However, 30% of these are variants of unknown significance (VUS). A assay that measures cell response to the cytotoxic effects of a methylating agent can determine the effects of VUS in MMR genes and identify patients with constitutional MMR-deficiency syndrome. We adapted this method to test the effects of VUS in MLH1 and MSH2 genes found in patients with suspected Lynch syndrome. METHODS: We transiently expressed MLH1 or MSH2 variants in MLH1- or MSH2-null human colorectal cancer cell lines (HCT116 or LoVo), respectively. The MMR process causes death of cells with methylation-damaged DNA bases, so we measured proportions of cells that undergo death following exposure to the methylating agent; cells that escaped its toxicity were considered to have variants that affect function of the gene product. Using this assay, we analyzed 88 variants (mainly missense variants), comprising a validation set of 40 previously classified variants (19 in MLH1 and 21 in MSH2) and a prospective set of 48 VUS (25 in MLH1 and 23 in MSH2). Prediction scores were calculated for all VUS according to the recommendations of the American College of Medical Genetics and Genomics, based on clinical, somatic, in silico, population, and functional data. RESULTS: The assay correctly classified 39 of 40 variants in the validation set. The assay identified 12 VUS that did alter function of the gene product and 28 VUS that did not; the remaining 8 VUS had intermediate effects on MMR capacity and could not be classified. Comparison of assay results with prediction scores confirmed the ability of the assay to discriminate VUS that affected the function of the gene products from those that did not. CONCLUSIONS: Using an assay that measures the ability of the cells to undergo death following DNA damage induction by a methylating agent, we were able to assess whether variants in MLH1 and MSH2 cause defects in DNA MMR. This assay might be used to help assessing the pathogenicity of VUS in MLH1 and MSH2 found in patients with suspected Lynch syndrome.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , DNA Methylation/genetics , Genetic Testing/methods , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Biological Assay/methods , Cell Line, Tumor , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Computer Simulation , DNA Methylation/drug effects , DNA Mismatch Repair/genetics , Feasibility Studies , Germ-Line Mutation , Guanine/analogs & derivatives , Guanine/pharmacology , Humans , Methylnitronitrosoguanidine/toxicity
7.
J Clin Invest ; 129(2): 786-801, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30480549

ABSTRACT

Tumor cure with conventional fractionated radiotherapy is 65%, dependent on tumor cell-autonomous gradual buildup of DNA double-strand break (DSB) misrepair. Here we report that single-dose radiotherapy (SDRT), a disruptive technique that ablates more than 90% of human cancers, operates a distinct dual-target mechanism, linking acid sphingomyelinase-mediated (ASMase-mediated) microvascular perfusion defects to DNA unrepair in tumor cells to confer tumor cell lethality. ASMase-mediated microcirculatory vasoconstriction after SDRT conferred an ischemic stress response within parenchymal tumor cells, with ROS triggering the evolutionarily conserved SUMO stress response, specifically depleting chromatin-associated free SUMO3. Whereas SUMO3, but not SUMO2, was indispensable for homology-directed repair (HDR) of DSBs, HDR loss of function after SDRT yielded DSB unrepair, chromosomal aberrations, and tumor clonogen demise. Vasoconstriction blockade with the endothelin-1 inhibitor BQ-123, or ROS scavenging after SDRT using peroxiredoxin-6 overexpression or the SOD mimetic tempol, prevented chromatin SUMO3 depletion, HDR loss of function, and SDRT tumor ablation. We also provide evidence of mouse-to-human translation of this biology in a randomized clinical trial, showing that 24 Gy SDRT, but not 3×9 Gy fractionation, coupled early tumor ischemia/reperfusion to human cancer ablation. The SDRT biology provides opportunities for mechanism-based selective tumor radiosensitization via accessing of SDRT/ASMase signaling, as current studies indicate that this pathway is tractable to pharmacologic intervention.


Subject(s)
Homologous Recombination , Neoplasms , Reperfusion Injury , Signal Transduction , Animals , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Humans , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/radiotherapy , Signal Transduction/genetics , Signal Transduction/radiation effects , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
8.
J Med Genet ; 53(6): 377-84, 2016 06.
Article in English | MEDLINE | ID: mdl-26831756

ABSTRACT

BACKGROUND: Every colorectal cancer (CRC) patient should be tested for microsatellite instability (MSI, a marker for defective DNA mismatch repair) as a first screen for Lynch syndrome (LS). In this study, we investigated whether it may be possible to improve the detection of MSI in CRC. We examined whether the HT17 DNA repeat (critical for correct splicing of the chaperone HSP110) might constitute a superior marker for diagnosis of the MSI phenotype in patients with CRC compared with the standard panel of markers (pentaplex). METHODS: The HT17 polymorphism was analysed in germline DNA from 1037 multi-ethnic individuals. We assessed its sensitivity and specificity for detecting MSI in a multicentre, population-based cohort of 685 patients with CRC and an additional series of 70 patients with CRC considered to be at-risk of LS. All cases were screened earlier for MSI using pentaplex markers. Cases showing discordant HT17/pentaplex results were further examined for the expression of mismatch repair proteins. RESULTS: HT17 status was analysed independently and blinded to previous results from pentaplex genotyping. HT17 showed no germline allelic variation outside a very narrow range. Compared with the pentaplex panel, HT17 showed better sensitivity (0.984 (95% CI 0.968 to 0.995) vs 0.951 (95% CI 0.925 to 0.972)) and similar specificity (0.997 (95% CI 0.989 to 1.000) for both) for the detection of MSI. Furthermore, HT17 alone correctly classified samples judged to be uncertain with the pentaplex panel and showed excellent ability to detect MSI in patients with LS. CONCLUSIONS: HT17 simplifies and improves the current standard molecular methods for detecting MSI in CRC.


Subject(s)
Colorectal Neoplasms/genetics , HSP110 Heat-Shock Proteins/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA/genetics , DNA Mismatch Repair/genetics , Genotype , Humans , Microsatellite Instability
10.
Oncotarget ; 6(28): 24969-77, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26327213

ABSTRACT

Mismatch-repair (MMR)-deficient cells show increased in vitro tolerance to thiopurines because they escape apoptosis resulting from MMR-dependent signaling of drug-induced DNA damage. Prolonged treatment with immunosuppressants including azathioprine (Aza), a thiopurine prodrug, has been suggested as a risk factor for the development of late onset leukemias/lymphomas displaying a microsatellite instability (MSI) phenotype, the hallmark of a defective MMR system. We performed a dose effect study in mice to investigate the development of MSI lymphomas associated with long term Aza treatment. Over two years, Aza was administered to mice that were wild type, null or heterozygous for the MMR gene Msh2. Ciclosporin A, an immunosuppressant with an MMR-independent signaling, was also administered to Msh2(wt) mice as controls. Survival, lymphoma incidence and MSI tumor phenotype were investigated. Msh2(+/-) mice were found more tolerant than Msh2(wt) mice to the cytotoxicity of Aza. In Msh2(+/-) mice, Aza induced a high incidence of MSI lymphomas in a dose-dependent manner. In Msh2(wt) mice, a substantial lifespan was only observed at the lowest Aza dose. It was associated with the development of lymphomas, one of which displayed the MSI phenotype, unlike the CsA-induced lymphomas. Our findings define Aza as a risk factor for an MSI-driven lymphomagenesis process.


Subject(s)
Azathioprine/toxicity , Lymphoma/genetics , Microsatellite Instability , MutS Homolog 2 Protein/genetics , Adult , Aged , Animals , DNA Mismatch Repair/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Immunosuppressive Agents/toxicity , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Kaplan-Meier Estimate , Lymphoma/chemically induced , Lymphoma/metabolism , Male , Mice, Knockout , Middle Aged , MutS Homolog 2 Protein/metabolism , Phenotype , Risk Assessment/methods , Risk Factors , Time Factors , Young Adult
11.
Gastroenterology ; 149(4): 1017-29.e3, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116798

ABSTRACT

BACKGROUND & AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS: We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS: In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION: The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms/diagnosis , Drug Resistance, Neoplasm , Genetic Testing , Germ-Line Mutation , Lymphocytes/drug effects , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Adult , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Caco-2 Cells , Case-Control Studies , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mutational Analysis , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , HCT116 Cells , Heredity , Humans , Lymphocytes/metabolism , Male , Methylation , Mismatch Repair Endonuclease PMS2 , Multiplex Polymerase Chain Reaction , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary/drug therapy , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/metabolism , Neoplastic Syndromes, Hereditary/pathology , Nuclear Proteins/genetics , Phenotype , Predictive Value of Tests , Reproducibility of Results , Transfection , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...