Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 194: 112255, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32244098

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) is a public health problem that affects over 38 million people worldwide. Although there are highly active antiretroviral therapies, emergence of antiviral resistant strains is a problem which leads to almost a million death annually. Thus, the development of new drugs is necessary. The viral enzyme reverse transcriptase (RT) represents a validated therapeutic target. Because the oxoquinolinic scaffold has substantial biological activities, including antiretroviral, a new series of 4-oxoquinoline ribonucleoside derivatives obtained by molecular hybridization were studied here. All synthesized compounds were tested against human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT), and 9a and 9d displayed the highest antiviral activities, with IC50 values of 1.4 and 1.6 µM, respectively. These compounds were less cytotoxic than AZT and showed CC50 values of 1486 and 1394 µM, respectively. Molecular docking studies showed that the most active compounds bound to the allosteric site of the enzyme, suggesting a low susceptibility to the development of antiviral resistance. In silico pharmacokinetic and toxicological evaluations reinforced the potential of the active compounds as anti-HIV candidates for further exploration. Overall, this work showed that compounds 9a and 9d are promising scaffold for future anti-HIV-1 RT drug design.


Subject(s)
4-Quinolones/pharmacology , Anti-HIV Agents/pharmacology , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Ribonucleosides/pharmacology , 4-Quinolones/chemical synthesis , 4-Quinolones/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , HIV Reverse Transcriptase/metabolism , HIV-1/metabolism , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Ribonucleosides/chemical synthesis , Ribonucleosides/chemistry , Structure-Activity Relationship
2.
Beilstein J Org Chem ; 15: 388-400, 2019.
Article in English | MEDLINE | ID: mdl-30873225

ABSTRACT

4-Oxoquinolines are a class of organic substances of great importance in medicinal chemistry, due to their biological and synthetic versatility. N-1-Alkylated-4-oxoquinoline derivatives have been associated with different pharmacological activities such as antibacterial and antiviral. The presence of a carboxamide unit connected to carbon C-3 of the 4-oxoquinoline core has been associated with various biological activities. Experimentally, the N-ethylation reaction of N-benzyl-4-oxo-1,4-dihydroquinoline-3-carboxamide occurs at the nitrogen of the oxoquinoline group, in a regiosselective way. In this work, we employed DFT methods to investigate the regiosselective ethylation reaction of N-benzyl-4-oxo-1,4-dihydroquinoline-3-carboxamide, evaluating its acid/base behavior and possible reaction paths.

3.
Bioorg Med Chem ; 23(24): 7777-84, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26643220

ABSTRACT

We described the synthesis of a new congener series of 1,2,3-triazolyl-4-oxoquinolines and evaluated their ability to inhibit oseltamivir (OST)-resistant influenza strains. Oxoquinoline derivative 1i was the most potent compound within this series, inhibiting 94% of wild-type (WT) influenza neuraminidase (NA) activity. Compound 1i inhibited influenza virus replication with an EC50 of 0.2µM with less cytotoxicity than OST, and also inhibited different OST-resistant NAs. These results suggest that 1,2,3-triazolyl-4-oxoquinolines represent promising lead molecules for further anti-influenza drug design.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza B virus/drug effects , Influenza, Human/drug therapy , Oseltamivir/pharmacology , Quinolones/pharmacology , Triazoles/pharmacology , Antiviral Agents/chemistry , Drug Design , Drug Resistance, Viral , Humans , Influenza A virus/enzymology , Influenza B virus/enzymology , Influenza, Human/virology , Molecular Docking Simulation , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Quinolones/chemistry , Triazoles/chemistry
4.
Molecules ; 19(5): 6651-70, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24858098

ABSTRACT

As part of a continuing search for new potential anticancer candidates, we describe the synthesis, cytotoxicity and mechanistic evaluation of a series of 4-oxoquinoline-3-carboxamide derivatives as novel anticancer agents. The inhibitory activity of compounds 10-18 was determined against three cancer cell lines using the MTT colorimetric assay. The screening revealed that derivatives 16b and 17b exhibited significant cytotoxic activity against the gastric cancer cell line but was not active against a normal cell line, in contrast to doxorubicin, a standard chemotherapeutic drug in clinical use. Interestingly, no hemolytical activity was observed when the toxicity of 16b and 17b was tested against blood cells. The in silico and in vitro mechanistic evaluation indicated the potential of 16b as a lead for the development of novel anticancer agents against gastric cancer cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor/drug effects , Cell Membrane/drug effects , Chemistry Techniques, Synthetic , Computer Simulation , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Erythrocytes/drug effects , Hemolytic Agents/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Molecular Structure , Quinolones/chemistry , Stomach Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...