Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Eur J Immunol ; : e2350792, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727188

ABSTRACT

Loss of perfusion in the burn wound might cause wound deepening and impaired healing. We previously showed persistent microvascular thrombosis coinciding with intraluminal neutrophils extracellular traps in human burned skin. This study investigates the presence of intraluminal citrullinated histone 3 (H3cit) from different cellular origins (neutrophils, monocytes, and lymphocytes) in relation to microvascular thrombosis of burn wounds. Eschar was obtained from burn patients (n = 18) 6-40 days postburn with a mean total burned body surface area of 23%. Microvascular presence of tissue factor (TF), factor XII (FXII) and thrombi was assessed by immunohistochemistry. Intramicrovascular cell death was analyzed via immunofluorescent microscopy, combining antibodies for neutrophils (MPO), monocytes (CD14), and lymphocytes (CD45) with endothelial cell markers CD31 and H3cit. Significantly increased microvascular expression of TF, FXII, and thrombi (CD31+) was found in all eschar samples compared with control uninjured skin. Release of H3cit from different cellular origins was observed in the lumen of the dermal microvasculature in the eschar tissue 7-40 days postburn, with release from neutrophilic origin being 2.7 times more abundant. Intraluminal presence of extracellular H3cit colocalizing with either MPO, CD14, or CD45 is correlated to increased microvascular thrombosis in eschar of burn patients.

2.
Front Immunol ; 15: 1303776, 2024.
Article in English | MEDLINE | ID: mdl-38348032

ABSTRACT

Introduction: Burns are characterized by a massive and prolonged acute inflammation, which persists for up to months after the initial trauma. Due to the complexity of the inflammatory process, Predicting the dynamics of wound healing process can be challenging for burn injuries. The aim of this study was to develop simulation models for the post-burn immune response based on (pre)clinical data. Methods: The simulation domain was separated into blood and tissue compartments. Each of these compartments contained solutes and cell agents. Solutes comprise pro-inflammatory cytokines, anti-inflammatory cytokines and inflammation triggering factors. The solutes diffuse around the domain based on their concentration profiles. The cells include mast cells, neutrophils, and macrophages, and were modeled as independent agents. The cells are motile and exhibit chemotaxis based on concentrations gradients of the solutes. In addition, the cells secrete various solutes that in turn alter the dynamics and responses of the burn wound system. Results: We developed an Glazier-Graner-Hogeweg method-based model (GGH) to capture the complexities associated with the dynamics of inflammation after burn injuries, including changes in cell counts and cytokine levels. Through simulations from day 0 - 4 post-burn, we successfully identified key factors influencing the acute inflammatory response, i.e., the initial number of endothelial cells, the chemotaxis threshold, and the level of chemoattractants. Conclusion: Our findings highlight the pivotal role of the initial endothelial cell count as a key parameter for intensity of inflammation and progression of acute inflammation, 0 - 4 days post-burn.


Subject(s)
Cytokines , Endothelial Cells , Humans , Inflammation , Neutrophils , Immunity
3.
Burns ; 50(3): 597-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37940425

ABSTRACT

Burns are a major global healthcare concern, often complicated by the presence of bacteria such as Pseudomonas aeruginosa in the wounds. Silver-based dressings are commonly used in the treatment of burns but can cause skin irritation and delay healing time. Medical-grade honey (MGH) provides an interesting alternative. This study investigated the antimicrobial effects and possible cytotoxicity of L-Mesitran Soft (MGH-gel) and its individual components, Medihoney (Manuka), Flammazine (silver sulphadiazine), and silver nitrate (AgNO3) in an ex vivo human burn wound model. Bacterial survival and wound healing parameters, including re-epithelialization and keratinocyte proliferation were assessed. L-Mesitran, Flammazine, and AgNO3 reduced P. aeruginosa numbers below detection levels. L-Mesitran Soft exhibited a significantly stronger antimicrobial effect compared to Medihoney. The individual components of L-Mesitran contributed significantly to its antibacterial efficacy, thus suggesting synergistic activities. Moreover, L-Mesitran, Flammazine, and AgNO3 slightly inhibited re-epithelialization while Medihoney treatment resulted in a complete lack of re-epithelialization and keratinocyte proliferation. Furthermore, clinical cases illustrated the effectiveness of MGH therapy in infected burns. Overall, L-Mesitran Soft had similar effects as silver-based products on bacterial load and epidermal regeneration, but outperformed Medihoney. Therefore, supplemented MGH could be used as an effective alternative to silver-based dressings for P. aeruginosa-infected burns.


Subject(s)
Burns , Honey , Humans , Silver Sulfadiazine/pharmacology , Silver Sulfadiazine/therapeutic use , Burns/drug therapy , Burns/complications , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria
4.
J Invest Dermatol ; 144(3): 669-696.e10, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37806443

ABSTRACT

Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1ß, IL-6, TGF-ß1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1ß, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.


Subject(s)
Burns , Interleukin-6 , Humans , Rats , Male , Animals , Inflammation Mediators , Cytokines/metabolism , Burns/metabolism , Interleukin-1beta , Inflammation , Immunity
5.
Front Immunol ; 14: 1264716, 2023.
Article in English | MEDLINE | ID: mdl-37901218

ABSTRACT

Introduction: Thermal injury often leads to prolonged and excessive inflammation, which hinders the recovery of patients. There is a notable absence of suitable animal-free models for investigating the inflammatory processes following burn injuries, thereby impeding the development of more effective therapies to improve burn wound healing in patients. Methods: In this study, we established a human full skin equivalent (FSE) burn wound model and incorporated human peripheral blood-derived monocytes and T cells. Results: Upon infiltration into the FSEs, the monocytes differentiated into macrophages within a span of 7 days. Burn-injured FSEs exhibited macrophages with increased expression of HLA-DR+ and elevated production of IL-8 (CXCL8), in comparison to uninjured FSEs. Among the T cells that actively migrated into the FSEs, the majority were CD4+ and CD25+. These T cells demonstrated augmented expression of markers associated with regulatory T cell, Th1, or Th17 activity, which coincided with significant heightened cytokine production, including IFN-γ, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IP-10 (CXCL10), and TGF-ß1. Burn injury did not impact the studied effector T cell subsets or cytokine levels. Discussion: Collectively, this study represents a significant advancement in the development of an immunocompetent human skin model, specifically tailored for investigating burn-induced innate or adaptive immune reactions at the site of burn injury.


Subject(s)
Burns , Interleukin-8 , Humans , Monocytes , Cytokines , T-Lymphocyte Subsets
6.
J Funct Biomater ; 14(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36662076

ABSTRACT

Healing of burn injury is a complex process that often leads to the development of functional and aesthetic complications. To study skin regeneration in more detail, organotypic skin models, such as full skin equivalents (FSEs) generated from dermal matrices, can be used. Here, FSEs were generated using de-epidermalized dermis (DED) and collagen matrices MatriDerm® and Mucomaix®. Our aim was to validate the MatriDerm- and Mucomaix-based FSEs for the use as in vitro models of wound healing. Therefore, we first characterized the FSEs in terms of skin development and cell proliferation. Proper dermal and epidermal morphogenesis was established in all FSEs and was comparable to ex vivo human skin models. Extension of culture time improved the organization of the epidermal layers and the basement membrane in MatriDerm-based FSE but resulted in rapid degradation of the Mucomaix-based FSE. After applying a standardized burn injury to the models, re-epithelization occurred in the DED- and MatriDerm-based FSEs at 2 weeks after injury, similar to ex vivo human skin. High levels of pro-inflammatory cytokines were present in the culture media of all models, but no significant differences were observed between models. We anticipate that these animal-free in vitro models can facilitate research on skin regeneration and can be used to test therapeutic interventions in a preclinical setting to improve wound healing.

7.
Front Immunol ; 13: 1034420, 2022.
Article in English | MEDLINE | ID: mdl-36451819

ABSTRACT

The systemic and local immune response in burn patients is often extreme and derailed. As excessive inflammation can damage healthy tissues and slow down the healing process, modulation of inflammatory responses could limit complications and improve recovery. Due to its complexity, more detailed information on the immune effects of thermal injury is needed to improve patient outcomes. We therefore characterized and quantified subsets of immune cells and mediators present in human burn wound tissue (eschar), sampled at various time points. This study shows that after burn injury, the number of immune cells were persistently increased, unlike the normal wound healing process. There was an immediate, strong increase in neutrophils and a moderate increase in monocytes/macrophages and lymphocytes, especially in the second and third week post burn. The percentage of classical (CD14highCD16-) monocytes/macrophages demonstrated a steady decrease over time, whereas the proportion of intermediate (CD14highCD16+) monocytes/macrophages slowly increased. The absolute numbers of T cells, NK cells and B cells increased up to week 3, while the fraction of γδ T cells was increased only in week 1. Secretome profiling revealed high levels of chemokines and an overall pro-inflammatory cytokine milieu in burn tissue. The local burn immune response shows similarities to the systemic immune reaction, but differs in neutrophil maturity and lymphocyte composition. Altogether, the neutrophil surges, high levels of pro-inflammatory cytokines and limited immunosuppression might be key factors that prolong the inflammation phase and delay the wound healing process in burns.


Subject(s)
Cytokines , Skin , Humans , Wound Healing , Inflammation , Immunity, Innate
8.
J Invest Dermatol ; 142(11): 3093-3109.e15, 2022 11.
Article in English | MEDLINE | ID: mdl-35623415

ABSTRACT

Because burn injuries are often followed by a derailed immune response and excessive inflammation, a thorough understanding of the occurring reactions is key to preventing secondary complications. This systematic review, which includes 247 animal studies, shows the postburn response of 14 different immune cell types involved in immediate and long-term effects in both wound tissue and circulation. Peripheral blood neutrophil and monocyte numbers increased directly after burns, whereas thrombocyte numbers increased near the end of the first week. However, lymphocyte numbers were decreased for at least 2 weeks. In burn wound tissue, neutrophil and macrophage numbers accumulated during the first 3 weeks. Burns also altered cellular functions because we found an increased migratory potential of leukocytes, impaired antibacterial activity of neutrophils, and enhanced inflammatory mediator production by macrophages. Neutrophil surges were positively associated with burn size and were highest in rats. Altogether, this comprehensive overview of the temporal immune cell dynamics shows that unlike normal wound healing, burn injury induces a long-lasting inflammatory response. It provides a fundamental research basis to improve experimental set-ups, burn care, and outcomes.


Subject(s)
Burns , Rats , Animals , Burns/metabolism , Neutrophils , Macrophages/metabolism , Anti-Bacterial Agents , Inflammation Mediators/metabolism
9.
Viruses ; 15(1)2022 12 20.
Article in English | MEDLINE | ID: mdl-36680055

ABSTRACT

Infections involving antibiotic resistant Staphylococcus aureus (S. aureus) represent a major challenge to successful treatment. Further, although bacteriophages (phages) could be an alternative to antibiotics, there exists a lack of correlation in phage susceptibility results between conventional in vitro and in vivo assays. This discrepancy may hinder the potential implementation of bacteriophage therapy. In this study, the susceptibility of twelve S. aureus strains to three commercial phage cocktails and two single phages was assessed. These S. aureus strains (including ten clinical isolates, five of which were methicillin-resistant) were compared using four assays: the spot test, efficiency of plating (EOP), the optical density assay (all in culture media) and microcalorimetry in human serum. In the spot test, EOP and optical density assay, all cocktails and single phages lysed both methicillin susceptible and methicillin resistant S. aureus strains. However, there was an absence of phage-mediated lysis in high concentrations of human serum as measured using microcalorimetry. As this microcalorimetry-based assay more closely resembles in vivo conditions, we propose that microcalorimetry could be included as a useful addition to conventional assays, thereby facilitating more accurate predictions of the in vivo susceptibility of S. aureus to phages during phage selection for therapeutic purposes.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents , Staphylococcal Infections/therapy , Staphylococcus Phages
10.
Front Microbiol ; 12: 616979, 2021.
Article in English | MEDLINE | ID: mdl-33692766

ABSTRACT

Antimicrobial peptides (AMPs) or host defense peptides protect the host against various pathogens such as yeast, fungi, viruses and bacteria. AMPs also display immunomodulatory properties ranging from the modulation of inflammatory responses to the promotion of wound healing. More interestingly, AMPs cause cell disruption through non-specific interactions with the membrane surface of pathogens. This is most likely responsible for the low or limited emergence of bacterial resistance against many AMPs. Despite the increasing number of antibiotic-resistant bacteria and the potency of novel AMPs to combat such pathogens, only a few AMPs are in clinical use. Therefore, the current review describes (i) the potential of AMPs as alternatives to antibiotics, (ii) the challenges toward clinical implementation of AMPs and (iii) strategies to improve the success rate of AMPs in clinical trials, emphasizing the lessons we could learn from these trials.

11.
Ann Clin Microbiol Antimicrob ; 19(1): 37, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32814573

ABSTRACT

BACKGROUND: Cold atmospheric plasma (CAP), which is ionized gas produced at atmospheric pressure, could be a novel and potent antimicrobial therapy for the treatment of infected wounds. Previously we have shown that CAP generated with a flexible surface Dielectric Barrier Discharge (sDBD) is highly effective against bacteria in vitro and in ex vivo burn wound models. In the current paper, we determined the in vitro and in vivo safety and efficacy of CAP generated by this sDBD device. METHODS: The effect of CAP on DNA mutations of V79 fibroblasts was measured using a hypoxanthine-guanine-phosphoribosyltransferase (HPRT) assay. Furthermore, effects on cell proliferation, apoptosis and DNA damage in ex vivo burn wound models (BWMs) were assessed using immunohistochemistry. Next, 105 colony forming units (CFU) P. aeruginosa strain PAO1 were exposed to CAP in a 3D collagen-elastin matrix environment to determine the number of surviving bacteria in vitro. Finally, rat excision wounds were inoculated with 107 CFU PAO1 for 24 h. The wounds received a single CAP treatment, repeated treatments on 4 consecutive days with CAP, 100 µL of 1% (wt/wt) silver sulfadiazine or no treatment. Wound swabs and punch biopsies were taken to determine the number of surviving bacteria. RESULTS: Exposure of V79 fibroblasts to CAP did not increase the numbers of mutated colonies. Additionally, the number of proliferative, apoptotic and DNA damaged cells in the BWMs was comparable to that of the unexposed control. Exposure of PAO1 to CAP for 2 min resulted in the complete elimination of bacteria in vitro. Contrarily, CAP treatment for 6 min of rat wounds colonized with PAO1 did not effectively reduce the in vivo bacterial count. CONCLUSIONS: CAP treatment was safe but showed limited efficacy against PAO1 in our rat wound infection model.


Subject(s)
Fibroblasts/drug effects , Plasma Gases/pharmacology , Pseudomonas aeruginosa/drug effects , Transplants/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy , Animals , Apoptosis/drug effects , Burns/drug therapy , Cell Line , Cell Proliferation/drug effects , Cell Survival , Cricetulus , DNA Damage/drug effects , Disease Models, Animal , Female , Fibroblasts/cytology , Humans , Male , Mutation , Rats , Safety , Skin , Treatment Outcome
12.
Wound Repair Regen ; 28(5): 666-675, 2020 09.
Article in English | MEDLINE | ID: mdl-32570295

ABSTRACT

The treatment of burn wounds by enzymatic debridement using bromelain has shown promising results in our burn center. However, inadequate debridement occurred in a few cases in which the etiology of the burn was attributed to relatively low temperature burns. We hypothesized that bromelain is ineffective in burns in which collagen denaturation, which occurs approximately at 65°C, has not taken place. Our objective was to assess whether there is a relationship between the denaturation of collagen and the ability of bromelain to debride acute scald burn wounds of different temperatures. Ex vivo human skin from four different donors was cut into 1x1 cm samples, and scald burns were produced by immersion in water at temperatures of 40°C, 50°C, 60°C, 70°C, and 100°C for 20 minutes. Denaturation of collagen was assessed with histology, using hematoxylin and eosin (H&E) staining and a fluorescently labeled collagen hybridizing peptide (CHP), and with second harmonic generation (SHG) microscopy. Burned samples and one control sample (room temperature) were weighed before and after application of enzymatic debridement to assess the efficacy of enzymatic debridement. After enzymatic debridement, a weight reduction of 80% was seen in the samples heated to 70°C and 100°C, whereas the other samples showed a reduction of 20%. Unfolding of collagen, loss of basket-weave arrangement, and necrosis was seen in samples heated to 60°C or higher. Evident CHP fluorescence, indicative of collagen denaturation, was seen in samples of 60°C, 70°C and 100°C. SHG intensity, signifying intact collagen, was significantly lower in the 70°C and 100°C group (P <.05) compared to the lower temperatures. In conclusion, denaturation of collagen in skin samples occurred between 60°C and 70°C and strongly correlated with the efficacy of enzymatic debridement. Therefore, enzymatic debridement with the use of bromelain is ineffective in scald burns lower than 60°C.


Subject(s)
Bromelains/pharmacology , Burns/drug therapy , Debridement/methods , Collagen , Humans , In Vitro Techniques , Wound Healing/physiology
13.
Front Immunol ; 11: 621222, 2020.
Article in English | MEDLINE | ID: mdl-33584717

ABSTRACT

Severe burn injury causes local and systemic immune responses that can persist up to months, and can lead to systemic inflammatory response syndrome, organ damage and long-term sequalae such as hypertrophic scarring. To prevent these pathological conditions, a better understanding of the underlying mechanisms is essential. In this longitudinal study, we analyzed the temporal peripheral blood immune profile of 20 burn wound patients admitted to the intensive care by flow cytometry and secretome profiling, and compared this to data from 20 healthy subjects. The patient cohort showed signs of systemic inflammation and persistently high levels of pro-inflammatory soluble mediators, such as IL-6, IL-8, MCP-1, MIP-1ß, and MIP-3α, were measured. Using both unsupervised and supervised flow cytometry techniques, we observed a continuous release of neutrophils and monocytes into the blood for at least 39 days. Increased numbers of immature neutrophils were present in peripheral blood in the first three weeks after injury (0.1-2.8 × 106/ml after burn vs. 5 × 103/ml in healthy controls). Total lymphocyte numbers did not increase, but numbers of effector T cells as well as regulatory T cells were increased from the second week onward. Within the CD4+ T cell population, elevated numbers of CCR4+CCR6- and CCR4+CCR6+ cells were found. Altogether, these data reveal that severe burn injury induced a persistent innate inflammatory response, including a release of immature neutrophils, and shifts in the T cell composition toward an overall more pro-inflammatory phenotype, thereby continuing systemic inflammation and increasing the risk of secondary complications.


Subject(s)
Burns/immunology , Cytokines/blood , Neutrophil Infiltration , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocyte Subsets/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Burns/blood , Burns/complications , Cellular Senescence , Female , Flow Cytometry , Follow-Up Studies , Humans , Immunity, Innate , Inflammation Mediators/blood , Leukocyte Count , Male , Middle Aged , Monocytes/classification , Monocytes/cytology , Neutrophils/cytology , Receptors, CCR4/analysis , Receptors, CCR6/analysis , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/etiology , Young Adult
14.
Ann Clin Microbiol Antimicrob ; 18(1): 38, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796055

ABSTRACT

BACKGROUND: We investigated the efficacy of a synthetic antimicrobial peptide SAAP-148, which was shown to be effective against Methicillin-resistant Staphylococcus aureus (MRSA) on tape-stripped mice skin. Unexpectedly, SAAP-148 was not effective against MRSA in our pilot study using rats with excision wounds. Therefore, we investigated factors that might have contributed to the poor efficacy of SAAP-148. Subsequently, we optimised the protocol and assessed the efficacy of SAAP-148 in an adapted rat study. METHODS: We incubated 100 µL of SAAP-148 with 1 cm2 of a wound dressing for 1 h and determined the unabsorbed volume of peptide solution. Furthermore, 105 colony forming units (CFU)/mL MRSA were exposed to increasing dosages of SAAP-148 in 50% (v/v) human plasma, eschar- or skin extract or PBS. After 30 min incubation, the number of viable bacteria was determined. Next, ex vivo skin models were inoculated with MRSA for 1 h and exposed to SAAP-148. Finally, excision wounds on the back of rats were inoculated with 107 CFU MRSA overnight and treated with SAAP-148 for 4 h or 24 h. Subsequently, the number of viable bacteria was determined. RESULTS: Contrary to Cuticell, Parafilm and Tegaderm film, < 20% of peptide solution was recovered after incubation with gauze, Mepilex border and Opsite Post-op. Furthermore, in plasma, eschar- or skin extract > 20-fold higher dosages of SAAP-148 were required to achieve a 2-log reduction (LR) of MRSA versus SAAP-148 in PBS. Exposure of ex vivo models to SAAP-148 for 24 h resulted in a 4-fold lower LR than a 1 h or 4 h exposure period. Additionally, SAAP-148 caused a 1.3-fold lower mean LR at a load of 107 CFU compared to 105 CFU MRSA. Moreover, exposure of ex vivo excision wound models to SAAP-148 resulted in a 1.5-fold lower LR than for tape-stripped skin. Finally, SAAP-148 failed to reduce the bacterial counts in an adapted rat study. CONCLUSIONS: Several factors, such as absorption of SAAP-148 by wound dressings, components within wound exudates, re-colonisation during the exposure of SAAP-148, and a high bacterial load may contribute to the poor antimicrobial effect of SAAP-148 against MRSA in the rat model.


Subject(s)
Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Synthetic Drugs/pharmacology , Wound Infection , Administration, Topical , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Pilot Projects , Rats , Skin/microbiology , Staphylococcal Infections/microbiology , Synthetic Drugs/administration & dosage , Wound Infection/drug therapy , Wound Infection/microbiology
15.
BMC Infect Dis ; 19(1): 1093, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888515

ABSTRACT

BACKGROUND: Accurate determination of the efficacy of antimicrobial agents requires neutralization of residual antimicrobial activity in the samples before microbiological assessment of the number of surviving bacteria. Sodium polyanethol sulfonate (SPS) is a known neutralizer for the antimicrobial activity of aminoglycosides and polymyxins. In this study, we evaluated the ability of SPS to neutralize residual antimicrobial activity of antimicrobial peptides [SAAP-148 and pexiganan; 1% (wt/v) in PBS], antibiotics [mupirocin (Bactroban) and fusidic acid (Fucidin) in ointments; 2% (wt/wt))] and disinfectants [2% (wt/wt) silver sulfadiazine cream (SSD) and 0.5% (v/v) chlorhexidine in 70% alcohol]. METHODS: Homogenates of human skin models that had been exposed to various antimicrobial agents for 1 h were pipetted on top of Methicillin-resistant Staphylococcus aureus (MRSA) on agar plates to determine whether the antimicrobial agents display residual activity. To determine the optimal concentration of SPS for neutralization, antimicrobial agents were mixed with PBS or increasing doses of SPS in PBS (0.05-1% wt/v) and then 105 colony forming units (CFU)/mL MRSA were added. After 30 min incubation, the number of viable bacteria was assessed. Next, the in vitro efficacy of SAAP-148 against various gram-positive and gram-negative bacteria was determined using PBS or 0.05% (wt/v) SPS immediately after 30 min incubation of the mixture. Additionally, ex vivo excision wound models were inoculated with 105 CFU MRSA for 1 h and exposed to SAAP-148, pexiganan, chlorhexidine or PBS for 1 h. Subsequently, samples were homogenized in PBS or 0.05% (wt/v) SPS and the number of viable bacteria was assessed. RESULTS: All tested antimicrobials displayed residual activity in tissue samples, resulting in a lower recovery of surviving bacteria on agar. SPS concentrations at ≥0.05% (wt/v) were able to neutralize the antimicrobial activity of SAAP-148, pexiganan and chlorhexidine, but not of SSD, Bactroban and Fucidin. Finally, SPS-neutralization in in vitro and ex vivo efficacy tests of SAAP-148, pexiganan and chlorhexidine against gram-positive and gram-negative bacteria resulted in significantly higher numbers of CFU compared to control samples without SPS-neutralization. CONCLUSIONS: SPS was successfully used to neutralize residual activity of SAAP-148, pexiganan and chlorhexidine and this prevented an overestimation of their efficacy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Microbial Sensitivity Tests/methods , Polyanetholesulfonate/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Chlorhexidine/pharmacology , Disinfectants/pharmacology , Epidermis/drug effects , Fusidic Acid/pharmacology , Gram-Negative Bacteria/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Mupirocin/pharmacology , Osmolar Concentration , Polyanetholesulfonate/chemistry
16.
Burns ; 44(2): 429-435, 2018 03.
Article in English | MEDLINE | ID: mdl-29032968

ABSTRACT

The Renin Angiotensin System is involved in fibrotic pathologies in various organs such as heart, kidney and liver. Inhibition of this system by angiotensin converting enzyme antagonists, such as Captopril, has been shown beneficial effects on these pathologies. Captopril reduced the inflammatory reaction but also directly influenced the fibrotic process. Prolonged and excessive inflammatory response is a major cause of hypertrophic scar formation in burns. We therefore evaluated the effect of Captopril on the healing of partial thickness burn wounds in a rat model. Partial thickness contact burns were inflicted on the dorsum of the rats. The rats received either systemic or local treatment with Captopril. The inflammatory reaction and wound healing (scar) parameters were investigated and compared to control animals. In this study we could not detect positive effects of either administration route with Captopril on the inflammatory reaction, nor on wound healing parameters. The local treatment showed reduced wound closure in comparison to the systemic treatment and the control group. Early Captopril treatment of burn wounds did not show the beneficial effects that were reported for fibrotic disorders in other tissues. To influence the fibrotic response Captopril treatment at a later time point, e.g. during the remodeling phase, might still have beneficial effects.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Burns/pathology , Captopril/pharmacology , Skin/drug effects , Wound Healing/drug effects , Administration, Cutaneous , Administration, Oral , Animals , Burns/complications , Cicatrix/etiology , Cicatrix/pathology , Disease Models, Animal , Early Medical Intervention , Inflammation , Macrophages/drug effects , Male , Mast Cells/drug effects , Neutrophils/drug effects , Random Allocation , Rats , Rats, Wistar , Skin/pathology
17.
PLoS One ; 12(6): e0179350, 2017.
Article in English | MEDLINE | ID: mdl-28614412

ABSTRACT

Healing of burn wounds is often associated with scar formation due to excessive inflammation and delayed wound closure. To date, no effective treatment is available to prevent the fibrotic process. The Renin Angiotensin System (RAS) was shown to be involved in fibrosis in various organs. Statins (e.g. Atorvastatin), Angiotensin receptor antagonists (e.g. Losartan) and the combination of these drugs are able to reduce the local RAS activation, and reduced fibrosis in other organs. We investigated whether inhibition of the RAS could improve healing of burn wounds by treatment with Atorvastatin, Losartan or the combination of both drugs. Therefore, full and partial thickness burn wounds were inflicted on both flanks of Yorkshire pigs. Oral administration of Atorvastatin, Losartan or the combination was started at post-burn day 1 and continued for 28 days. Full thickness wounds were excised and transplanted with an autologous meshed split-thickness skin graft at post-burn day 14. Partial thickness wounds received conservative treatment. Atorvastatin treatment resulted in enhanced graft take and wound closure of the full thickness wounds, faster resolution of neutrophils compared to all treatments and reduced alpha-smooth muscle actin positive cells compared to control treatment. Treatment with Losartan and to a lesser extent the combination therapy resulted in diminished graft take, increased wound contraction and poorer scar outcome. In contrast, Losartan treatment in partial thickness wounds decreased the alpha-smooth muscle actin+ fibroblasts and contraction. In conclusion, we showed differential effects of Losartan and Atorvastatin in full and partial thickness wounds. The extensive graft loss seen in Losartan treated wounds is most likely responsible for the poor clinical outcome of these full thickness burn wounds. Therefore, Losartan treatment should not be started before transplantation in order to prevent graft loss. Atorvastatin seems to accelerate the healing process in full thickness wounds possibly by dampening the pro-inflammatory response.


Subject(s)
Atorvastatin/pharmacology , Burns/drug therapy , Losartan/pharmacology , Wound Healing/drug effects , Actins/metabolism , Administration, Oral , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Atorvastatin/administration & dosage , Burns/physiopathology , Burns/surgery , Cicatrix/pathology , Cicatrix/prevention & control , Combined Modality Therapy , Drug Therapy, Combination , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunohistochemistry , Losartan/administration & dosage , Muscle, Smooth/chemistry , Neutrophils/metabolism , Peroxidase/metabolism , Skin Transplantation/methods , Swine , Time Factors , Transplantation, Autologous , Treatment Outcome , Wound Healing/physiology
18.
J Mater Sci Mater Med ; 25(2): 423-33, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24178984

ABSTRACT

Collagen-elastin (CE) scaffolds are frequently used for dermal replacement in the treatment of full-thickness skin defects such as burn wounds. But little is known about the optimal pore size and level of cross-linking. Different formulations of dermal substitutes with unidirectional pores were tested in porcine full-thickness wounds in combination with autologous split skin mesh grafts (SSG). Effect on wound healing was evaluated both macro- and microscopically. CE scaffolds with a pore size of 80 or 100 µm resulted in good wound healing after one-stage grafting. Application of scaffolds with a larger average pore size (120 µm) resulted in more myofibroblasts and more foreign body giant cells (FBGC). Moderate crosslinking impaired wound healing as it resulted in more wound contraction, more FBGC and increased epidermal thickness compared to no cross-linking. In addition, take rate and redness were negatively affected compared to SSG only. Vascularization and the number of myofibroblasts were not affected by cross-linking. Surprisingly, stability of cross-linked scaffolds was not increased in the wound environment, in contrast to in vitro results. Cross-linking reduced the proliferation of fibroblasts in vitro, which might explain the reduced clinical outcome. The non-cross-linked CE substitute with unidirectional pores allowed one-stage grafting of SSG, resulting in good wound healing. In addition, only a very mild foreign body reaction was observed. Cross-linking of CE scaffolds negatively affected wound healing on several important parameters. The optimal non-cross-linked CE substitute is a promising candidate for future clinical evaluation.


Subject(s)
Collagen/chemistry , Elastin/chemistry , Skin, Artificial , Wound Healing , Cells, Cultured , Foreign-Body Reaction , Tissue Scaffolds
19.
Wound Repair Regen ; 19 Suppl 1: s59-65, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21793967

ABSTRACT

The quality of skin wound healing can be improved by the application of scaffolds as skin replacement materials. Although the clinical requirements for the function of such materials are defined, the translation of these requirements into physical and mechanobiological properties of scaffolds is difficult. Natural as well as constructed biological materials and synthetic substitutes are discussed. Furthermore, new techniques such as electrospinning and solid freeform fabrication as well as new types of materials such as self-assembling peptides are reviewed with regard to their potential role in the production of skin substitute materials.


Subject(s)
Skin, Artificial/trends , Wound Healing/physiology , Biocompatible Materials , Humans , Skin , Tissue Engineering/trends
20.
Wound Repair Regen ; 18(3): 291-301, 2010.
Article in English | MEDLINE | ID: mdl-20412555

ABSTRACT

Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to compare this model with a human adult and scar tissue model. A burn wound (10 x 2 mm) was made in human ex vivo fetal, adult, and scar tissue under controlled and standardized conditions. Subsequently, the skin samples were cultured for 7, 14, and 21 days. Cells in the skin samples maintained their viability during the 21-day culture period. Already after 7 days, a significantly higher median percentage of wound closure was achieved in the fetal skin model vs. the adult and scar tissue model (74% vs. 28 and 29%, respectively, p<0.05). After 21 days of culture, only fetal wounds were completely reepithelialized. Fibroblasts migrated into the wounded dermis of all three wound models during culture, but more fibroblasts were present earlier in the wound area of the fetal skin model. The fast reepithelialization and prompt presence of many fibroblasts in the fetal model suggest that rapid healing might play a role in scarless healing.


Subject(s)
Burns/physiopathology , Cell Movement/physiology , Cicatrix, Hypertrophic/physiopathology , Fetus/physiology , Prenatal Injuries/physiopathology , Wound Healing/physiology , Adult , Fibroblasts/physiology , Humans , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...