Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 11: 1383046, 2024.
Article in English | MEDLINE | ID: mdl-38725830

ABSTRACT

Aims: MiR-181c-5p overexpression associates with heart failure (HF) and cardiac damage, but the underlying pathophysiology remains unclear. This study investigated the effect of miR-181c-5p inhibition on cardiac function and fibrosis in a rodent model of diastolic dysfunction, and evaluated additional effects on kidney as relevant comorbid organ. Methods and results: Diastolic dysfunction was induced in male C57/BL6J mice (n = 20) by combining high-fat diet, L-NG-nitroarginine methyl ester, and angiotensin II administration, and was compared to sham controls (n = 18). Mice were randomized to subcutaneous miR-181c-5p antagomiR (INH) or scrambled antagomiR injections (40 mg/kg/week). HF mice demonstrated diastolic dysfunction and increased fibrosis, which was attenuated by INH treatment. Remarkably, HF + INH animals had a threefold higher mortality rate (60%) compared to HF controls (20%). Histological examination revealed increased glomerular damage in all INH treated mice, and signs of thrombotic microangiopathy (TMA) in mice who died prematurely. Quantitative polymerase chain reaction demonstrated a miR-181c-5p-related downregulation of cardiac but not renal Tgfbr1 in HF + INH mice, while INH treatment reduced renal but not cardiac Vegfa expression in all mice. Conclusion: This study demonstrates cardiac anti-fibrotic effects of miR-181c-5p inhibition in a rodent HF model through targeting of Tgfbr1 in the heart. Despite improved diastolic function, HF + INH mice had higher mortality due to increased predisposition for TMA, increased renal fibrosis and glomerular damage, associated with Vegfa downregulation in kidneys.

2.
Curr Protoc ; 3(9): e880, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37728252

ABSTRACT

The last decades have illustrated the importance of microRNAs (miRNAs) in various biological and pathological processes. The combined visualization of miRNAs using fluorescent in situ hybridization (FISH) and proteins using immunofluorescence (IF) can reveal their spatiotemporal distribution in relation to the cell and tissue morphology and can provide interesting insights into miRNA-protein interactions. However, standardized protocols for co-localization of miRNAs and proteins are currently lacking, and substantial technical obstacles still need to be addressed. In particular, the incompatibility of protein IF protocols with steps required for miRNA FISH, such as proteolytic pretreatments and ethylcarbodiimide post-fixation, as well as hurdles related to low signal intensity of low-copy miRNAs, remains challenging. Our technique may considerably enhance miRNA-based research, as current detection techniques lack the ability to elucidate cellular and subcellular localization. Here, we describe an optimized 2-day protocol for combined detection of low-abundant miRNAs and proteins in cryosections of cardiac tissue, without the need for protease-dependent pretreatment or post-fixation treatment. We successfully demonstrate endothelial-specific localization of low-abundant miR-181c-5p in cardiac tissue. © 2023 Wiley Periodicals LLC. Basic Protocol: Fluorescent in situ hybridization for miRNA combined with staining of proteins.


Subject(s)
Cryoultramicrotomy , MicroRNAs , In Situ Hybridization, Fluorescence , Endopeptidases , Histological Techniques , MicroRNAs/genetics , Peptide Hydrolases
3.
Eur J Prev Cardiol ; 29(17): 2183-2199, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-35989414

ABSTRACT

Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.


Subject(s)
Cardiovascular Diseases , Humans , Secondary Prevention , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Exercise
4.
Eur J Prev Cardiol ; 28(15): 1722-1733, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34508569

ABSTRACT

AIMS: In patients with heart failure with preserved ejection fraction (HFpEF), exercise training improves the quality of life and aerobic capacity (peakV·O2). Up to 55% of HF patients, however, show no increase in peakV·O2 despite adequate training. We hypothesized that circulating microRNAs (miRNAs) can distinguish exercise low responders (LR) from exercise high responders (HR) among HFpEF patients. METHODS AND RESULTS: We selected HFpEF patients from the Optimizing Exercise Training in Prevention and Treatment of Diastolic HF (OptimEx) study which attended ≥70% of training sessions during 3 months (n = 51). Patients were defined as HR with a change in peakV·O2 above median (6.4%), and LR as below median (n = 30 and n = 21, respectively). Clinical, ergospirometric, and echocardiographic characteristics were similar between LR and HR. We performed an miRNA array (n = 377 miRNAs) in 14 age- and sex-matched patients. A total of 10 miRNAs were upregulated in LR, of which 4 correlated with peakV·O2. Validation in the remaining 37 patients indicated that high miR-181c predicted reduced peakV·O2 response (multiple linear regression, ß = -2.60, P = 0.011), and LR status (multiple logistic regression, odds ratio = 0.48, P = 0.010), independent of age, sex, body mass index, and resting heart rate. Furthermore, miR-181c decreased in LR after exercise training (P-group = 0.030, P-time = 0.048, P-interaction = 0.037). An in silico pathway analysis identified several downstream targets involved in exercise adaptation. CONCLUSIONS: Circulating miR-181c is a marker of the response to exercise training in HFpEF patients. High miR-181c levels can aid in identifying LR prior to training, providing the possibility for individualized management.


Subject(s)
Heart Failure , MicroRNAs , Exercise/physiology , Exercise Tolerance/physiology , Heart Failure/diagnosis , Heart Failure/genetics , Heart Failure/therapy , Humans , MicroRNAs/genetics , Quality of Life , Stroke Volume/physiology
5.
Am J Physiol Heart Circ Physiol ; 320(6): H2416-H2428, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33989083

ABSTRACT

Endothelial cells (ECs) secrete different paracrine signals that modulate the function of adjacent cells; two examples of these paracrine signals are nitric oxide (NO) and neuregulin-1 (NRG1), a cardioprotective growth factor. Currently, it is undetermined whether one paracrine factor can compensate for the loss of another. Herein, we hypothesized that NRG1 can compensate for endothelial NO synthase (eNOS) deficiency. We characterized eNOS null and wild-type (WT) mice by cardiac ultrasound and histology and we determined circulating NRG1 levels. In a separate experiment, eight groups of mice were divided into four groups of eNOS null mice and WT mice; half of the mice received angiotensin II (ANG II) to induce a more severe phenotype. Mice were randomized to daily injections with NRG1 or vehicle for 28 days. eNOS deficiency increased NRG1 plasma levels, indicating that ECs increase their NRG1 expression when NO production is deleted. eNOS deficiency also increased blood pressure, lowered heart rate, induced cardiac fibrosis, and affected diastolic function. In eNOS null mice, ANG II administration not only increased cardiac fibrosis but also induced cardiac hypertrophy and renal fibrosis. NRG1 administration prevented cardiac and renal hypertrophy and fibrosis caused by ANG II infusion and eNOS deficiency. Moreover, Nrg1 expression in the myocardium is shown to be regulated by miR-134. This study indicates that administration of endothelium-derived NRG1 can compensate for eNOS deficiency in the heart and kidneys.NEW & NOTEWORTHY ECs compensate for eNOS deficiency by increasing the secretion of NRG1. NRG1 administration prevents cardiac and renal hypertrophy and fibrosis caused by ANG II infusion and eNOS deficiency. NRG1 expression is regulated by miR-134.


Subject(s)
Endothelial Cells/metabolism , Heart Rate/genetics , Heart/drug effects , MicroRNAs/metabolism , Myocardium/pathology , Neuregulin-1/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Diastole/drug effects , Fibrosis/genetics , Fibrosis/pathology , Gene Expression Regulation , Heart Rate/drug effects , Kidney/pathology , Mice , Mice, Knockout , Neuregulin-1/pharmacology , Nitric Oxide Synthase Type III/metabolism , Random Allocation , Vasoconstrictor Agents/pharmacology
6.
J Mol Cell Cardiol ; 138: 75-87, 2020 01.
Article in English | MEDLINE | ID: mdl-31756323

ABSTRACT

The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.


Subject(s)
Cardiovascular Diseases/genetics , Endothelial Cells/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Animals , Humans , MicroRNAs/genetics , Myocardium/pathology , Neovascularization, Physiologic/genetics , Paracrine Communication/genetics
7.
Front Physiol ; 10: 638, 2019.
Article in English | MEDLINE | ID: mdl-31191343

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is one of the largest unmet clinical needs in 21st-century cardiology. It is a complex disorder resulting from the influence of several comorbidities on the endothelium. A derangement in nitric oxide bioavailability leads to an intricate web of physiological abnormalities in the heart, blood vessels, and other organs. In this review, we examine the contribution of cardiac and noncardiac factors to the development of HFpEF. We zoom in on recent insights on the role of comorbidities and microRNAs in HFpEF. Finally, we address the potential of exercise training, which is currently the only available therapy to improve aerobic capacity and quality of life in HFpEF patients. Unraveling the underlying mechanisms responsible for this improvement could lead to new biomarkers and therapeutic targets for HFpEF.

8.
Am J Physiol Heart Circ Physiol ; 316(6): H1417-H1425, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30951364

ABSTRACT

The myocardium is a highly structured tissue consisting of different cell types including cardiomyocytes, endothelial cells, fibroblasts, smooth muscle cells, inflammatory cells, and stem cells. Microvascular endothelial cells are the most abundant cell type in the myocardium and play crucial roles during cardiac development, in normal adult myocardium, and during myocardial diseases such as heart failure. In the last decade, epigenetic changes have been described regulating cellular function in almost every cell type in the organism. Here, we review recent evidence on different epigenetic changes that regulate intercellular communication in normal myocardium and during myocardial diseases, including cardiac remodeling. Epigenetic changes influence many intercellular communication signaling systems, including the nitric oxide, angiotensin, and endothelin signaling systems. In this review, we go beyond discussing classic endothelial function (for instance nitric oxide secretion) and will discuss epigenetic regulation of intercellular communication.


Subject(s)
Cell Communication/genetics , DNA Methylation , Epigenesis, Genetic , Heart Diseases/genetics , Myocardium/metabolism , Ventricular Remodeling/genetics , Acetylation , Angiotensins/genetics , Angiotensins/metabolism , Animals , Chromatin Assembly and Disassembly , Endothelins/genetics , Endothelins/metabolism , Fibrosis , Gene Expression Regulation , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Histones/genetics , Histones/metabolism , Humans , Myocardium/pathology , Nitric Oxide/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...