Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 31(4): 743-759.e8, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38593807

ABSTRACT

Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.


Subject(s)
Antimalarials , Malaria , Methylamines , Quinolines , Humans , Antimalarials/chemistry , Malaria/drug therapy , Phenols/therapeutic use , Quinolines/pharmacology , Quinolines/metabolism , Drug Development
2.
PLoS Pathog ; 19(1): e1011118, 2023 01.
Article in English | MEDLINE | ID: mdl-36696458

ABSTRACT

Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.


Subject(s)
Antimalarials , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Humans , Antimalarials/pharmacology , Cyclophilins/genetics , Cyclophilins/metabolism , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Microsatellite Repeats , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...