Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220086, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37183892

ABSTRACT

Skulls of living whales and dolphins (cetaceans) are telescoped-bones of the skull roof are overlapped by expanded facial bones and/or anteriorly extended occipital bones. Evolution of the underlying skull roof (calvarium), which lies between the telescoped regions, is relatively unstudied. We explore the evolution and development of the calvarium of toothed whales (odontocetes) by integrating fetal data with Oligocene odontocete fossils from North America, including eight neonatal and juvenile skulls of Olympicetus†. We identified two potential synapomorphies of crown Cetacea: contact of interparietals with frontals, and a single anterior median interparietal (AMI) element. Within Odontoceti, loss of contact between the parietals diagnoses the clade including Delphinida, Ziphiidae and Platanistidae (=Synrhina). Delphinida is characterized by a greatly enlarged interparietal. New fetal series of delphinoids reveal a consistent developmental pattern with three elements: the AMI and bilateral posterior interparietals (PIs). The PIs most resemble the medial interparietal elements of terrestrial artiodactyls, suggesting that the AMI of cetaceans could be a unique ossification. More broadly, the paucity of conserved anatomical relationships of the interparietals, as well as the fact that the elements often do not coalesce into a single bone, demonstrates that assessing homology of the interparietals across mammals remains challenging. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Subject(s)
Artiodactyla , Dolphins , Animals , Biological Evolution , Skull , Whales , Mammals , Phylogeny
2.
Naturwissenschaften ; 100(3): 257-61, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23358804

ABSTRACT

The origin of the pygmy right whale (Caperea marginata) has long been one of the most vexing conundrums of marine mammal evolution. The extremely disparate skeletal structure of Caperea and a patchy fossil record have left morphology and molecules at odds: whereas most morphological analyses ally Caperea with right whales (Balaenidae), most molecular studies instead suggest a close relationship with rorquals (Balaenopteridae) and grey whales (Eschrichtiidae). The morphological evidence supporting a Caperea-balaenid clade consists of several shared features of the skull and mandible, as traditionally observed in adult individuals. Here, we show that at least two of these features, the ascending process of the maxilla and the coronoid process, arise from substantially different precursors early during ontogeny and therefore likely do not represent genuine synapomorphies. Both of these juvenile morphologies have adult counterparts in the fossil record, thus indicating that the ontogenetic variation in the living species may be a genuine reflection of differing ancestral states. This new evidence contradicts previous morphological hypotheses on the origins of Caperea and may help to reconcile morphological and molecular evidence.


Subject(s)
Biological Evolution , Bone and Bones/anatomy & histology , Whales/anatomy & histology , Whales/classification , Animals , Fossils , Mandible/anatomy & histology , Maxilla/anatomy & histology , Whales/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...