Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters











Publication year range
1.
Ophthalmic Genet ; : 1-8, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373891

ABSTRACT

PURPOSE: Abetalipoproteinemia (ABL, MIM 200,100) is a rare autosomal recessive disorder caused by nonfunctional microsomal triglyceride transfer protein leading to absence of apolipoprotein B-containing lipoproteins in plasma and a retinitis pigmentosa-like fundus. The MTTP gene is expressed in retinal pigment epithelium (RPE) and ganglion cells of the human retina. Understanding ABL pathophysiology would benefit from new cellular-level clinical imaging of affected retinas. METHODS: We report multimodal retinal imaging in two patients with ABL. Case 1 (67-year-old woman) exhibited a bilateral decline of vision due to choroidal neovascularization (CNV) associated with angioid streaks and calcified Bruch membrane. Optical coherence tomography were consistent with basal laminar deposits and subretinal drusenoid deposits (SDD). RESULTS: Case 2 (46-year-old woman) exhibited unusual hyperpigmentation at the right fovea with count-fingers vision and a relatively unremarkable left fundus with 20/30 vision. The left eye exhibited the presence of nodular drusen and SDD and the absence of macular xanthophyll pigments. CONCLUSION: We propose that mutated MTTP within the retina may contribute to ABL retinopathy in addition to systemic deficiencies of fat-soluble vitamins. This concept is supported by a new mouse model with RPE-specific MTTP deficiency and a retinal degeneration phenotype. The observed range of human pathology, including angioid streaks, underscores the need for continued monitoring in adulthood, especially for CNV, a treatable condition.

2.
J Dent Educ ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390715

ABSTRACT

PURPOSE: To determine the relationship between woman leadership at senior administrative and predoctoral levels in United States (US) dental schools and assess if this relationship is affected by school characteristics. METHODS: A 23-question survey was created and distributed to each US accredited dental school (2023). Data regarding the gender of the school's dean, senior administrators, and student leaders, as well as school characteristics were gathered. Data were organized in Excel. Descriptive statistics were performed using mean and standard deviation for continuous measures and using count and percent for categorial measures. Statistical comparisons were performed using analysis of variance (ANOVA), Fisher's Exact, or Chi-squared tests for comparison of proportions. RESULTS: 32 dental schools provided analyzable data for this project (44.4% response rate). The most common senior administrative position held by a woman was the dean of student affairs (71.9%). For every surveyed school with a woman dean (n = 11, 34.4%), at least one other senior administrative position was held by a woman. There was no statistical significance between the year of school establishment, geographic region, gender of the dean, or prevalence of women administrators and students in leadership roles. The number of women students in leadership roles was close to the national enrollment trends for gender. CONCLUSIONS: Included US dental school data showed no relationship between women in leadership at the senior administrative and predoctoral levels. To keep leadership-minded students interested in dental academics throughout their careers, further studies are needed to identify the most important factors influencing careers in academic dentistry.

3.
Dent J (Basel) ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39056982

ABSTRACT

Our research explores the interplay between Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) and the host's inflammatory response in molar/incisor pattern periodontitis (MIPP). Cdt disrupts phosphatidylinositol-3,4,5-triphosphate (PIP3) signaling, influencing cytokine expression through canonical and non-canonical inflammasome activation as well as nuclear factor-κB (NF-κB) activation, leading to inflammation in MIPP. THP-1 differentiated macrophages (TDMs) exposed to Cdt exhibited an upregulation of pro-inflammatory genes and subsequent cytokine release. We analyzed the ability of a small molecule therapeutic, LGM2605, known for its anti-inflammatory properties, to reduce pro-inflammatory gene expression and cytokine release in Cdt-exposed and Aa-inoculated TDMs. LGM2605's mechanism of action involves inhibiting NF-κB while activating the Nrf2-transcription factor and antioxidants. Herein, we show that this small molecule therapeutic mitigates Cdt-induced pro-inflammatory cytokine expression and secretion. Our study also further defines Cdt's impact on osteoclast differentiation and maturation in MIPP. Cdt promotes increased TRAP+ cells, indicating heightened osteoclast differentiation, specific to Cdt's phosphatase activity. Cathepsin K levels rise during this process, reflecting changes in TRAP distribution between control and Cdt-treated cells. Exploring LGM2605's effect on Cdt-induced osteoclast differentiation and maturation, we found TRAP+ cells significantly reduced with LGM2605 treatment compared to Cdt alone. Upon LGM2605 treatment, immunocytochemistry revealed a decreased TRAP intensity and number of multinucleated cells. Moreover, immunoblotting showed reduced TRAP and cathepsin K levels, suggesting LGM2605's potential to curb osteoclast differentiation and maturation by modulating inflammatory cytokines, possibly involving Nrf2 activation. In summary, our research reveals the intricate connections between Cdt, pro-inflammatory cytokines, and osteoclast differentiation, offering novel therapeutic possibilities for managing these conditions.

4.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Article in English | MEDLINE | ID: mdl-38698905

ABSTRACT

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Subject(s)
Bacterial Toxins , SARS-CoV-2 , Synaptogyrins , Virus Internalization , Humans , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Synaptogyrins/metabolism , COVID-19/metabolism , COVID-19/virology , Jurkat Cells , Aggregatibacter actinomycetemcomitans/metabolism , Aggregatibacter actinomycetemcomitans/genetics , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Microdomains/metabolism
5.
FASEB J ; 38(5): e23522, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38445789

ABSTRACT

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (APOB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic depletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor-associated cholesterol deposits, and photoreceptor cell death, and loss of rod but not cone function. RPE-specific reduction in Mttp had no significant effect on plasma lipids and lipoproteins. While APOB was decreased in the RPE, most ocular retinoids remained unchanged, with the exception of the storage form of retinoid, retinyl ester. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but is not directly involved in plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.


Subject(s)
Carrier Proteins , Retina , Retinal Pigment Epithelium , Animals , Mice , Retinoids , Apolipoproteins B/genetics , Homeostasis
6.
Pathogens ; 13(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38392893

ABSTRACT

Recently, we reported that oral-epithelial cells (OE) are unique in their response to Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) in that cell cycle arrest (G2/M) occurs without leading to apoptosis. We now demonstrate that Cdt-induced cell cycle arrest in OE has a duration of at least 7 days with no change in viability. Moreover, toxin-treated OE develops a new phenotype consistent with cellular senescence; this includes increased senescence-associated ß-galactosidase (SA-ß-gal) activity and accumulation of the lipopigment, lipofuscin. Moreover, the cells exhibit a secretory profile associated with cellular senescence known as the senescence-associated secretory phenotype (SASP), which includes IL-6, IL-8 and RANKL. Another unique feature of Cdt-induced OE senescence is disruption of barrier function, as shown by loss of transepithelial electrical resistance and confocal microscopic assessment of primary gingival keratinocyte structure. Finally, we demonstrate that Cdt-induced senescence is dependent upon the host cell protein cellugyrin, a homologue of the synaptic vesicle protein synaptogyrin. Collectively, these observations point to a novel pathogenic outcome in oral epithelium that we propose contributes to both A. actinomycetemcomitans infection and periodontal disease progression.

7.
bioRxiv ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38105975

ABSTRACT

Lipid processing by the retinal pigment epithelium (RPE) is necessary to maintain retinal health and function. Dysregulation of retinal lipid homeostasis due to normal aging or to age-related disease triggers lipid accumulation within the RPE, on Bruch's membrane (BrM), and in the subretinal space. In its role as a hub for lipid trafficking into and out of the neural retina, the RPE packages a significant amount of lipid into lipid droplets for storage and into apolipoprotein B (apoB)-containing lipoproteins (Blps) for export. Microsomal triglyceride transfer protein (MTP), encoded by the MTTP gene, is essential for Blp assembly. Herein we test the hypothesis that MTP expression in the RPE is essential to maintain lipid balance and retinal function using the newly generated RPEΔMttp mouse model. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Mttp from the RPE results in intracellular lipid accumulation, increased photoreceptor -associated cholesterol deposits and photoreceptor cell death, and loss of rod but not cone function. RPE-specific ablation of Mttp had no significant effect on plasma lipids and lipoproteins. While, apoB was decreased in the RPE, ocular retinoid concentrations remained unchanged. Thus suggesting that RPE MTP is critical for Blp synthesis and assembly but not directly involved in ocular retinoid and plasma lipoprotein metabolism. These studies demonstrate that RPE-specific MTP expression is necessary to establish and maintain retinal lipid homeostasis and visual function.

9.
Front Cell Infect Microbiol ; 13: 1220089, 2023.
Article in English | MEDLINE | ID: mdl-37719670

ABSTRACT

Cytolethal distending toxins (Cdt) are a family of toxins produced by several human pathogens which infect mucocutaneous tissue and induce inflammatory disease. Human macrophages exposed to Aggregatibacter actinomycetemcomitans (Aa) Cdt respond through canonical and non-canonical inflammasome activation to stimulate cytokine release. The inflammatory response is dependent on PI3K signaling blockade via the toxin's phosphatidylinositol-3,4,5-triphosphate (PIP3) phosphatase activity; converting PIP3 to phosphatidylinsoitol-3,4-diphosphate (PI3,4P2) thereby depleting PIP3 pools. Phosphoinositides, also play a critical role in phagosome trafficking, serving as binding domains for effector proteins during phagosome maturation and subsequent fusion with lysosomes. We now demonstrate that AaCdt manipulates the phosphoinositide (PI) pools of phagosome membranes and alters Rab5 association. Exposure of macrophages to AaCdt slowed phagosome maturation and decreased phago-lysosome formation, thereby compromising macrophage phagocytic function. Moreover, macrophages exposed to Cdt showed decreased bactericidal capacity leading to increase in Aggregatibacter actinomycetemcomitans survival. Thus, Cdt may contribute to increased susceptibility to bacterial infection. These studies uncover an underexplored aspect of Cdt function and provide new insight into the virulence potential of Cdt in mediating the pathogenesis of disease caused by Cdt-producing organisms such as Aa.


Subject(s)
Aggregatibacter actinomycetemcomitans , Phosphatidylinositol 3-Kinases , Humans , Phagocytes , Macrophages , Phosphatidylinositols
10.
Dis Model Mech ; 16(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37401371

ABSTRACT

Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.


Subject(s)
Iron Overload , Proteomics , Mice , Animals , Oxidative Stress , Lysosomes/metabolism , Iron/metabolism , Iron Overload/metabolism , Iron Overload/pathology , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigment Epithelium/metabolism
11.
Autophagy Rep ; 2(1)2023.
Article in English | MEDLINE | ID: mdl-37034386

ABSTRACT

Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.

12.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047689

ABSTRACT

LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.


Subject(s)
Microtubule-Associated Proteins , Transcriptome , Animals , Male , Mice , Autophagy/genetics , Inflammation/genetics , Inflammation/metabolism , Lipids , Microtubule-Associated Proteins/metabolism , Phagocytosis/genetics , Retinal Pigment Epithelium/metabolism
13.
bioRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36993501

ABSTRACT

LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.

14.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36233133

ABSTRACT

Cytolethal distending toxins (Cdt) are produced by a diverse group of pathogens. One Cdt-producing organism, Aggregatibacter actinomycetemcomitans, plays a critical role in the pathogenesis of a unique form of periodontitis, formerly referred to as localized aggressive periodontitis. The active Cdt subunit, CdtB, is a potent phosphatidylinositol (PI) 3,4,5-triphosphate phosphatase capable of inducing PI-3-kinase signaling blockade, a requisite for Cdt-induced toxicity in lymphocytes. In this study, we extended our observations to include the oral keratinocyte response to AaCdt using cell lines and primary gingival keratinocytes. All three exhibited G2/M arrest when exposed to AaCdt toxin within 24 h. Toxin-treated cells exhibited reduced levels of pAkt and pGSK3ß within 6 h. Pre-treatment with GSK3ß kinase inhibitors, LY2090314, CHIR99021 and Tideglusib, abrogated Cdt-induced G2/M arrest. None of the oral epithelial cells exhibited evidence of apoptosis. Cells remained arrested in the G2/M phase for at least 72 h without evidence of DNA damage response activation (H2AX phosphorylation). Cdt-treated cells displayed increased phosphorylation of the cyclin dependent kinase 1 (CDK1); moreover, the GSK3 inhibitors blocked this increase and reduced total CDK1 levels. This study further clarifies the potential mechanism(s) contributing to Cdt toxicity and toxin-mediated pathogenesis.


Subject(s)
Aggregatibacter actinomycetemcomitans , Aggressive Periodontitis , Apoptosis , Bacterial Toxins , CDC2 Protein Kinase/metabolism , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Keratinocytes , Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/metabolism
15.
Exp Eye Res ; 224: 109216, 2022 11.
Article in English | MEDLINE | ID: mdl-36041509

ABSTRACT

Age-related macular degeneration (AMD) is a complex disease with increasing numbers of individuals being afflicted and treatment modalities limited. There are strong interactions between diet, age, the metabolome, and gut microbiota, and all of these have roles in the pathogenesis of AMD. Communication axes exist between the gut microbiota and the eye, therefore, knowing how the microbiota influences the host metabolism during aging could guide a better understanding of AMD pathogenesis. While considerable experimental evidence exists for a diet-gut-eye axis from murine models of human ocular diseases, human diet-microbiome-metabolome studies are needed to elucidate changes in the gut microbiome at the taxonomic and functional levels that are functionally related to ocular pathology. Such studies will reveal new ways to diminish risk for progression of- or incidence of- AMD. Current data suggest that consuming diets rich in dark fish, fruits, vegetables, and low in glycemic index are most retina-healthful during aging.


Subject(s)
Gastrointestinal Microbiome , Macular Degeneration , Microbiota , Humans , Mice , Animals , Metabolome , Diet , Macular Degeneration/metabolism
16.
FASEB J ; 36(8): e22428, 2022 08.
Article in English | MEDLINE | ID: mdl-35766190

ABSTRACT

Photoreceptors consume glucose supplied by the choriocapillaris to support phototransduction and outer segment (OS) renewal. Reduced glucose supply underlies photoreceptor cell death in inherited retinal degeneration and age-related retinal disease. We have previously shown that restricting glucose transport into the outer retina by conditional deletion of Slc2a1 encoding GLUT1 resulted in photoreceptor loss and impaired OS renewal. However, retinal neurons, glia, and the retinal pigment epithelium play specialized, synergistic roles in metabolite supply and exchange, and the cell-specific map of glucose uptake and utilization in the retina is incomplete. In these studies, we conditionally deleted Slc2a1 in a pan-retinal or rod-specific manner to better understand how glucose is utilized in the retina. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Slc2a1 from retinal neurons and Müller glia results in reduced OS growth and progressive rod but not cone photoreceptor cell death. Rhodopsin levels were severely decreased even at postnatal day 20 when OS length was relatively normal. Arrestin levels were not changed suggesting that glucose uptake is required to synthesize membrane glycoproteins. Rod-specific deletion of Slc2a1 resulted in similar changes in OS length and rod photoreceptor cell death. These studies demonstrate that glucose is an essential carbon source for rod photoreceptor cell OS maintenance and viability.


Subject(s)
Glucose Transporter Type 1 , Glucose , Retinal Cone Photoreceptor Cells , Retinal Degeneration , Rod Cell Outer Segment , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Rod Cell Outer Segment/metabolism , Rod Cell Outer Segment/pathology
17.
Oral Dis ; 28(8): 2175-2184, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33721362

ABSTRACT

Ameloblastoma is a locally aggressive odontogenic tumor. Etiopathogenesis and locally aggressive growth properties of ameloblastoma can be attributed to a hypoxic microenvironment conducive to tumor cell survival. Epithelial-derived follicular ameloblastoma cells (EP-AMCs) display enhanced basal autophagy, but the interplay of hypoxia and autophagy in EP-AMCs survival and ameloblastoma recurrence is unclear. We evaluated differential expression of autophagic markers in primary and recurrent ameloblastomas and hypothesized that hypoxia-induced autophagy supports EP-AMC survival. Primary and recurrent ameloblastomas were comparatively assessed for expression levels of pan-cytokeratin, Vimentin, and autophagic markers SQSTM1/p62, LC3, and pS6. EP-AMCs compared with human odontoma-derived cells (HODCs) were subjected to severe hypoxia to determine the interplay of hypoxia and autophagic process in posthypoxia survival. Pan-cytokeratin and SQSTM1/p62 were expressed by both primary and recurrent ameloblastoma epithelial cells while the ameloblastoma connective tissues displayed weak reactivity to vimentin. Under hypoxia, EP-AMC expression levels of hypoxia-inducible factor (HIF)-1α, p62, and LC3 were increased while pS6 was decreased posthypoxia. The combined decrease in pS6 and enhanced LC3 in EP-AMCs under hypoxia indicate that EP-AMCs re-establish basal autophagy under hypoxia. Taken together, these suggest a possible role of LC3-associated phagocytosis (LAP) in ameloblastoma cell survival.


Subject(s)
Ameloblastoma , Ameloblastoma/pathology , Autophagy , Cell Hypoxia , Cell Line, Tumor , Epithelial Cells/metabolism , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Keratins/metabolism , Sequestosome-1 Protein/metabolism , Tumor Microenvironment , Vimentin/metabolism
18.
Commun Biol ; 4(1): 1360, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34887495

ABSTRACT

Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients.


Subject(s)
AMP-Activated Protein Kinases/genetics , Retinal Degeneration/genetics , AMP-Activated Protein Kinases/metabolism , Female , Humans , Male , Middle Aged , Phenotype
20.
Int J Mol Sci ; 22(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071220

ABSTRACT

Visual function depends on the intimate structural, functional and metabolic interactions between the retinal pigment epithelium (RPE) and the neural retina. The daily phagocytosis of the photoreceptor outer segment tips by the overlaying RPE provides essential nutrients for the RPE itself and photoreceptors through intricate metabolic synergy. Age-related retinal changes are often characterized by metabolic dysregulation contributing to increased lipid accumulation and peroxidation as well as the release of proinflammatory cytokines. LGM2605 is a synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant and anti-inflammatory properties demonstrated in diverse in vitro and in vivo inflammatory disease models. In these studies, we tested the hypothesis that LGM2605 may be an attractive small-scale therapeutic that protects RPE against inflammation and restores its metabolic capacity under lipid overload. Using an in vitro model in which loss of the autophagy protein, LC3B, results in defective phagosome degradation and metabolic dysregulation, we show that lipid overload results in increased gasdermin cleavage, IL-1 ß release, lipid accumulation and decreased oxidative capacity. The addition of LGM2605 resulted in enhanced mitochondrial capacity, decreased lipid accumulation and amelioration of IL-1 ß release in a model of defective lipid homeostasis. Collectively, these studies suggest that lipid overload decreases mitochondrial function and increases the inflammatory response, with LGM2605 acting as a protective agent.


Subject(s)
Lignans/metabolism , Lipid Metabolism , Oxidative Stress/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigments/metabolism , Antioxidants/metabolism , Autophagy , Butylene Glycols/pharmacology , Cell Line , Cytokines , Gene Expression , Glucosides/pharmacology , Humans , Inflammation/metabolism , Lignans/chemistry , Lipids , Mitochondria/metabolism , Oxidation-Reduction , Phagocytosis , Phagosomes/metabolism , Retinal Pigments/genetics
SELECTION OF CITATIONS
SEARCH DETAIL