Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Food Sci ; 84(7): 1682-1691, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31287569

ABSTRACT

Microwave vacuum drying as compared to conventional vacuum drying has evinced advantages regarding drying time, while comparable product characteristics were achieved when drying sensitive biological material. Due to the volumetric microwave input, a time reduction of up to 90% is possible. When drying viscous liquids, a foamed structure that remains stable during drying exhibits further advantages as the diffusion-limited third drying step is enhanced by the porous structure. As foams not only have to be thermally resistant during microwave vacuum processing, but also withstand the vacuum, a specific process for foam drying by microwaves under low pressure conditions was developed. Foam formation and stabilization was achieved by using a synergistic mixture of proteins and carbohydrates; Lactobacillus paracasei ssp. paracasei F19 (L. paracasei) served as a model sensitive substance. Investigation of surface activity and foaming properties as a function of L. paracasei concentration revealed a significant positive contribution of the bacterial cells. It was shown that L. paracasei directly adsorbed at the air-water interface. Besides, a structuring of the liquid lamellae was assumed. Moreover, drying time was reduced to at least 50% compared to microwave vacuum drying without foaming. It was further observed that the slight loss in survival was mainly due to the relatively high moisture content and high vacuum levels at the beginning of the process. However, foaming, vacuum application, and final drying, respectively, did not affect viability of the bacterial cells. Thus, by incorporation of lactic acid bacteria into foam structures, drying can be carried out in a fraction of time, and further results in high-product quality. PRACTICAL APPLICATION: The application of continuous foam drying offers an efficient and energy-saving alternative to the currently applied techniques for the processing of sensitive material. The process could be applied for the preservation of starter cultures and probiotics as well as in the pharmaceutical industry, when sensitive material such as therapeutic proteins is dried. This process is especially suitable for freezing-sensitive and thermolabile substances.


Subject(s)
Desiccation/methods , Lacticaseibacillus paracasei/chemistry , Preservation, Biological/methods , Probiotics/chemistry , Desiccation/instrumentation , Microwaves , Preservation, Biological/instrumentation , Vacuum
2.
Phys Rev Lett ; 113(2): 021301, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062161

ABSTRACT

Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

3.
Phys Rev Lett ; 112(13): 131302, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24745402

ABSTRACT

We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

SELECTION OF CITATIONS
SEARCH DETAIL