Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39282372

ABSTRACT

Extrachromosomal DNA (ecDNA) is a hallmark of aggressive cancer, contributing to both oncogene amplification and tumor heterogeneity. Here, we used Hi-C, super-resolution imaging, and long-read sequencing to explore the nuclear architecture of MYC-amplified ecDNA in colorectal cancer cells. Intriguingly, we observed frequent spatial proximity between ecDNA and 68 repetitive elements which we called ecDNA-interacting elements or EIEs. To characterize a potential regulatory role of EIEs, we focused on a fragment of the L1M4a1#LINE/L1 which we found to be co-amplified with MYC on ecDNA, gaining enhancer-associated chromatin marks in contrast to its normally silenced state. This EIE, in particular, existed as a naturally occurring structural variant upstream of MYC, gaining oncogenic potential in the transcriptionally permissive ecDNA environment. This EIE sequence is sufficient to enhance MYC expression and is required for cancer cell fitness. These findings suggest that silent repetitive genomic elements can be reactivated on ecDNA, leading to functional cooption and amplification. Repeat element activation on ecDNA represents a mechanism of accelerated evolution and tumor heterogeneity and may have diagnostic and therapeutic potential.

2.
bioRxiv ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39071420

ABSTRACT

While critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here we bypass the need for sequence-specific transcription factors and recruit activators directly using CARGO-VPR, an approach for targeting dCas9-VPR using a multiplexed array of RNA guides. We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible by single dCas9. We utilize CARGO-VPR across the Prdm8-Fgf5 locus in mESCs, where neither gene is expressed. We demonstrate that while activator recruitment to any tested region results in transcriptional induction of at least one gene, the expression level strongly depends on the genomic distance between the promoter and activator recruitment site. However, the expression-distance relationship for each gene scales distinctly in a manner not attributable to differences in 3D contact frequency, promoter DNA sequence or presence of the repressive chromatin marks at the locus.

3.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766104

ABSTRACT

Regulation of gene expression hinges on the interplay between enhancers and promoters, traditionally explored through pairwise analyses. Recent advancements in mapping genome folding, like GAM, SPRITE, and multi-contact Hi-C, have uncovered multi-way interactions among super-enhancers (SEs), spanning megabases, yet have not measured their frequency in single cells or the relationship between clustering and transcription. To close this gap, here we used multiplexed imaging to map the 3D positions of 376 SEs across thousands of mammalian nuclei. Notably, our single-cell images reveal that while SE-SE contacts are rare, SEs often form looser associations we termed "communities". These communities, averaging 4-5 SEs, assemble cooperatively under the combined effects of genomic tethers, Pol2 clustering, and nuclear compartmentalization. Larger communities are associated with more frequent and larger transcriptional bursts. Our work provides insights about the SE interactome in single cells that challenge existing hypotheses on SE clustering in the context of transcriptional regulation.

4.
Nat Genet ; 56(2): 306-314, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238628

ABSTRACT

Although promoters and their enhancers are frequently contained within a topologically associating domain (TAD), some developmentally important genes have their promoter and enhancers within different TADs. Hypotheses about molecular mechanisms enabling cross-TAD interactions remain to be assessed. To test these hypotheses, we used optical reconstruction of chromatin architecture to characterize the conformations of the Pitx1 locus on single chromosomes in developing mouse limbs. Our data support a model in which neighboring boundaries are stacked as a result of loop extrusion, bringing boundary-proximal cis-elements into contact. This stacking interaction also contributes to the appearance of architectural stripes in the population average maps. Through molecular dynamics simulations, we found that increasing boundary strengths facilitates the formation of the stacked boundary conformation, counter-intuitively facilitating border bypass. This work provides a revised view of the TAD borders' function, both facilitating and preventing cis-regulatory interactions, and introduces a framework to distinguish border-crossing from border-respecting enhancer-promoter pairs.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Animals , Mice , Enhancer Elements, Genetic/genetics , Chromatin/genetics , Chromosomes , Promoter Regions, Genetic/genetics , Insulator Elements
5.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873344

ABSTRACT

Repressive chromatin modifications are thought to compact chromatin to silence transcription. However, it is unclear how chromatin structure changes during silencing and epigenetic memory formation. We measured gene expression and chromatin structure in single cells after recruitment and release of repressors at a reporter gene. Chromatin structure is heterogeneous, with open and compact conformations present in both active and silent states. Recruitment of repressors associated with epigenetic memory produces chromatin compaction across 10-20 kilobases, while reversible silencing does not cause compaction at this scale. Chromatin compaction is inherited, but changes molecularly over time from histone methylation (H3K9me3) to DNA methylation. The level of compaction at the end of silencing quantitatively predicts epigenetic memory weeks later. Similarly, chromatin compaction at the Nanog locus predicts the degree of stem-cell fate commitment. These findings suggest that the chromatin state across tens of kilobases, beyond the gene itself, is important for epigenetic memory formation.

6.
Biophys J ; 122(17): 3532-3540, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37542372

ABSTRACT

Chromosomal dynamics plays a central role in a number of critical biological processes, such as transcriptional regulation, genetic recombination, and DNA replication. However, visualization of chromatin is generally limited to live imaging of a few fluorescently labeled chromosomal loci or high-resolution reconstruction of multiple loci from a single time frame. To aid in mapping the underlying chromosomal structure based on parsimonious experimental measurements, we present an exact analytical expression for the evolution of the polymer configuration based on a flexible-polymer model, and we propose an algorithm that tracks the polymer configuration from live images of chromatin marked with several fluorescent marks. Our theory identifies the resolution of microscopy needed to achieve high-accuracy tracking for a given spacing of markers, establishing the statistical confidence in the assignment of genome identity to the visualized marks. We then leverage experimental data of locus-tracking measurements to demonstrate the validity of our modeling approach and to establish a basis for the design of experiments with a desired resolution. Altogether, this work provides a computational approach founded on polymer physics that vastly improves the interpretation of in vivo measurements of biopolymer dynamics.


Subject(s)
Chromatin , Polymers , Chromosomes , DNA Replication , Algorithms
7.
Mol Cell ; 83(9): 1377-1392.e6, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146570

ABSTRACT

Although population-level analyses revealed significant roles for CTCF and cohesin in mammalian genome organization, their contributions at the single-cell level remain incompletely understood. Here, we used a super-resolution microscopy approach to measure the effects of removal of CTCF or cohesin in mouse embryonic stem cells. Single-chromosome traces revealed cohesin-dependent loops, frequently stacked at their loop anchors forming multi-way contacts (hubs), bridging across TAD boundaries. Despite these bridging interactions, chromatin in intervening TADs was not intermixed, remaining separated in distinct loops around the hub. At the multi-TAD scale, steric effects from loop stacking insulated local chromatin from ultra-long range (>4 Mb) contacts. Upon cohesin removal, the chromosomes were more disordered and increased cell-cell variability in gene expression. Our data revise the TAD-centric understanding of CTCF and cohesin and provide a multi-scale, structural picture of how they organize the genome on the single-cell level through distinct contributions to loop stacking.


Subject(s)
Chromatin , Chromosomes , Animals , Mice , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromosomes/genetics , Chromosomes/metabolism , Chromatin/genetics , Chromatin/metabolism , Mouse Embryonic Stem Cells/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Mammals/metabolism
8.
Proc Natl Acad Sci U S A ; 119(22): e2201883119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35617427

ABSTRACT

Polycomb-group proteins play critical roles in gene silencing through the deposition of histone H3 lysine 27 trimethylation (H3K27me3) and chromatin compaction. This process is essential for embryonic stem cell (ESC) pluripotency, differentiation, and development. Polycomb repressive complex 2 (PRC2) can both read and write H3K27me3, enabling progressive spreading of H3K27me3 on the linear genome. Long-range Polycomb-associated DNA contacts have also been described, but their regulation and role in gene silencing remain unclear. Here, we apply H3K27me3 HiChIP, a protein-directed chromosome conformation method, and optical reconstruction of chromatin architecture to profile long-range Polycomb-associated DNA loops that span tens to hundreds of megabases across multiple topological associated domains in mouse ESCs and human induced pluripotent stem cells. We find that H3K27me3 loop anchors are enriched for Polycomb nucleation points and coincide with key developmental genes. Genetic deletion of H3K27me3 loop anchors results in disruption of spatial contact between distant loci and altered H3K27me3 in cis, both locally and megabases away on the same chromosome. In mouse embryos, loop anchor deletion leads to ectopic activation of the partner gene, suggesting that Polycomb-associated loops control gene silencing during development. Further, we find that alterations in PRC2 occupancy resulting from an RNA binding­deficient EZH2 mutant are accompanied by loss of Polycomb-associated DNA looping. Together, these results suggest PRC2 uses RNA binding to enhance long-range chromosome folding and H3K27me3 spreading. Developmental gene loci have unique roles in Polycomb spreading, emerging as important architectural elements of the epigenome.


Subject(s)
Chromosomes , Gene Expression Regulation, Developmental , Gene Silencing , Histones , Polycomb Repressive Complex 2 , Animals , Chromatin Immunoprecipitation/methods , Chromosomes/chemistry , Chromosomes/metabolism , Embryo, Mammalian , Enhancer of Zeste Homolog 2 Protein/genetics , Histones/genetics , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lysine/metabolism , Methylation , Mice , Nucleic Acid Conformation , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism
9.
Elife ; 102021 07 09.
Article in English | MEDLINE | ID: mdl-34240703

ABSTRACT

Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD and preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than 2-fold, even though disruptions of TAD borders can change gene expression by 10-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between E-P contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of E-P biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression and suggest new experimental directions.


Subject(s)
Chromatin/chemistry , Computational Biology/methods , Gene Expression Regulation , Transcription, Genetic , Animals , Genome , Humans , Hypersensitivity , Mice , Promoter Regions, Genetic
10.
Nat Commun ; 12(1): 3423, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103507

ABSTRACT

Chromatin architecture plays an important role in gene regulation. Recent advances in super-resolution microscopy have made it possible to measure chromatin 3D structure and transcription in thousands of single cells. However, leveraging these complex data sets with a computationally unbiased method has been challenging. Here, we present a deep learning-based approach to better understand to what degree chromatin structure relates to transcriptional state of individual cells. Furthermore, we explore methods to "unpack the black box" to determine in an unbiased manner which structural features of chromatin regulation are most important for gene expression state. We apply this approach to an Optical Reconstruction of Chromatin Architecture dataset of the Bithorax gene cluster in Drosophila and show it outperforms previous contact-focused methods in predicting expression state from 3D structure. We find the structural information is distributed across the domain, overlapping and extending beyond domains identified by prior genetic analyses. Individual enhancer-promoter interactions are a minor contributor to predictions of activity.


Subject(s)
DNA/genetics , Deep Learning , Drosophila melanogaster/genetics , Enhancer Elements, Genetic , Promoter Regions, Genetic , Transcription, Genetic , Algorithms , Animals , Chromatin/genetics , Computer Simulation , Gene Expression Regulation , Gene Silencing , Genome, Insect , Multigene Family , Neural Networks, Computer
11.
Nat Struct Mol Biol ; 28(6): 501-511, 2021 06.
Article in English | MEDLINE | ID: mdl-34117481

ABSTRACT

The mammalian SWI/SNF complex, or BAF complex, has a conserved and direct role in antagonizing Polycomb-mediated repression. Yet, BAF also promotes repression by Polycomb in stem cells and cancer. How BAF both antagonizes and promotes Polycomb-mediated repression remains unknown. Here, we utilize targeted protein degradation to dissect the BAF-Polycomb axis in mouse embryonic stem cells on short timescales. We report that rapid BAF depletion redistributes Polycomb repressive complexes PRC1 and PRC2 from highly occupied domains, like Hox clusters, to weakly occupied sites normally opposed by BAF. Polycomb redistribution from highly repressed domains results in their decompaction, gain of active epigenomic features and transcriptional derepression. Surprisingly, through dose-dependent degradation of PRC1 and PRC2, we identify a conventional role for BAF in Polycomb-mediated repression, in addition to global Polycomb redistribution. These findings provide new mechanistic insight into the highly dynamic state of the Polycomb-Trithorax axis.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Epigenetic Repression/physiology , Gene Expression Regulation/physiology , Multiprotein Complexes/physiology , Polycomb-Group Proteins/physiology , Animals , CRISPR-Cas Systems , Cells, Cultured , Chromatin Assembly and Disassembly/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/physiology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Epigenetic Repression/genetics , Gene Editing , Gene Expression Regulation/genetics , Genes, Homeobox , Genome , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Loss of Function Mutation , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteolysis , Recombinant Fusion Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/physiology
12.
Nat Protoc ; 16(3): 1647-1713, 2021 03.
Article in English | MEDLINE | ID: mdl-33619390

ABSTRACT

Chromatin conformation capture (3C) methods and fluorescent in situ hybridization (FISH) microscopy have been used to investigate the spatial organization of the genome. Although powerful, both techniques have limitations. Hi-C is challenging for low cell numbers and requires very deep sequencing to achieve its high resolution. In contrast, FISH can be done on small cell numbers and capture rare cell populations, but typically targets pairs of loci at a lower resolution. Here we detail a protocol for optical reconstruction of chromatin architecture (ORCA), a microscopy approach to trace the 3D DNA path within the nuclei of fixed tissues and cultured cells with a genomic resolution as fine as 2 kb and a throughput of ~10,000 cells per experiment. ORCA can identify structural features with comparable resolution to Hi-C while providing single-cell resolution and multimodal measurements characteristic of microscopy. We describe how to use this DNA labeling in parallel with multiplexed labeling of dozens of RNAs to relate chromatin structure and gene expression in the same cells. Oligopaint probe design, primary probe making, sample collection, cryosectioning and RNA/DNA primary probe hybridization can be completed in 1.5 weeks, while automated RNA/DNA barcode hybridization and RNA/DNA imaging typically takes 2-6 d for data collection and 2-7 d for the automated steps of image analysis.


Subject(s)
In Situ Hybridization, Fluorescence/methods , Microscopy, Fluorescence/methods , Optical Restriction Mapping/methods , Cell Line , Cell Nucleus/genetics , Cells, Cultured , Chromatin/metabolism , Chromatin Immunoprecipitation/methods , Chromosomes/genetics , DNA/chemistry , DNA/genetics , DNA Probes , Fluorescent Dyes/chemistry , Genetic Techniques , Genome/genetics , Genomics/methods , Humans , Image Processing, Computer-Assisted/methods , RNA/chemistry , RNA/genetics
13.
Cell ; 178(2): 473-490.e26, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31230715

ABSTRACT

We introduce APEX-seq, a method for RNA sequencing based on direct proximity labeling of RNA using the peroxidase enzyme APEX2. APEX-seq in nine distinct subcellular locales produced a nanometer-resolution spatial map of the human transcriptome as a resource, revealing extensive patterns of localization for diverse RNA classes and transcript isoforms. We uncover a radial organization of the nuclear transcriptome, which is gated at the inner surface of the nuclear pore for cytoplasmic export of processed transcripts. We identify two distinct pathways of messenger RNA localization to mitochondria, each associated with specific sets of transcripts for building complementary macromolecular machines within the organelle. APEX-seq should be widely applicable to many systems, enabling comprehensive investigations of the spatial transcriptome.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endonucleases/metabolism , Multifunctional Enzymes/metabolism , RNA/metabolism , Sequence Analysis, RNA/methods , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Microscopy, Fluorescence , Mitochondria/genetics , RNA/chemistry , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Transcriptome
14.
Nature ; 568(7750): 49-54, 2019 04.
Article in English | MEDLINE | ID: mdl-30886393

ABSTRACT

The establishment of cell types during development requires precise interactions between genes and distal regulatory sequences. We have a limited understanding of how these interactions look in three dimensions, vary across cell types in complex tissue, and relate to transcription. Here we describe optical reconstruction of chromatin architecture (ORCA), a method that can trace the DNA path in single cells with nanoscale accuracy and genomic resolution reaching two kilobases. We used ORCA to study a Hox gene cluster in cryosectioned Drosophila embryos and labelled around 30 RNA species in parallel. We identified cell-type-specific physical borders between active and Polycomb-repressed DNA, and unexpected Polycomb-independent borders. Deletion of Polycomb-independent borders led to ectopic enhancer-promoter contacts, aberrant gene expression, and developmental defects. Together, these results illustrate an approach for high-resolution, single-cell DNA domain analysis in vivo, identify domain structures that change with cell identity, and show that border elements contribute to the formation of physical domains in Drosophila.


Subject(s)
Chromatin/chemistry , DNA/analysis , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Nucleic Acid Conformation , RNA/analysis , Single-Cell Analysis , Animals , Chromatin/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , Drosophila melanogaster/cytology , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation, Developmental , Genes, Homeobox/genetics , Genome, Insect/genetics , Male , Multigene Family/genetics , Organ Specificity , Polycomb-Group Proteins/genetics , Promoter Regions, Genetic/genetics , RNA/genetics , RNA/metabolism , Transcription, Genetic
15.
Science ; 362(6413)2018 10 26.
Article in English | MEDLINE | ID: mdl-30361340

ABSTRACT

The spatial organization of chromatin is pivotal for regulating genome functions. We report an imaging method for tracing chromatin organization with kilobase- and nanometer-scale resolution, unveiling chromatin conformation across topologically associating domains (TADs) in thousands of individual cells. Our imaging data revealed TAD-like structures with globular conformation and sharp domain boundaries in single cells. The boundaries varied from cell to cell, occurring with nonzero probabilities at all genomic positions but preferentially at CCCTC-binding factor (CTCF)- and cohesin-binding sites. Notably, cohesin depletion, which abolished TADs at the population-average level, did not diminish TAD-like structures in single cells but eliminated preferential domain boundary positions. Moreover, we observed widespread, cooperative, multiway chromatin interactions, which remained after cohesin depletion. These results provide critical insight into the mechanisms underlying chromatin domain and hub formation.


Subject(s)
Chromatin/chemistry , Single-Cell Analysis/methods , CCCTC-Binding Factor/chemistry , Cell Cycle Proteins/chemistry , Chromatin/ultrastructure , Chromosomal Proteins, Non-Histone/chemistry , Genome, Human , HCT116 Cells , Humans , In Situ Hybridization, Fluorescence , Protein Binding , Protein Domains , Cohesins
16.
Methods Mol Biol ; 1663: 231-252, 2017.
Article in English | MEDLINE | ID: mdl-28924672

ABSTRACT

OligoSTORM and OligoDNA-PAINT meld the Oligopaint technology for fluorescent in situ hybridization (FISH) with, respectively, Stochastic Optical Reconstruction Microscopy (STORM) and DNA-based Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) to enable in situ single-molecule super-resolution imaging of nucleic acids. Both strategies enable ≤20 nm resolution and are appropriate for imaging nanoscale features of the genomes of a wide range of species, including human, mouse, and fruit fly (Drosophila).


Subject(s)
DNA/chemistry , In Situ Hybridization, Fluorescence/methods , Single Molecule Imaging/methods , Animals , Drosophila , Genome , Humans , Mice
17.
Elife ; 52016 05 20.
Article in English | MEDLINE | ID: mdl-27198188

ABSTRACT

Spatial organization of the transcriptome has emerged as a powerful means for regulating the post-transcriptional fate of RNA in eukaryotes; however, whether prokaryotes use RNA spatial organization as a mechanism for post-transcriptional regulation remains unclear. Here we used super-resolution microscopy to image the E. coli transcriptome and observed a genome-wide spatial organization of RNA: mRNAs encoding inner-membrane proteins are enriched at the membrane, whereas mRNAs encoding outer-membrane, cytoplasmic and periplasmic proteins are distributed throughout the cytoplasm. Membrane enrichment is caused by co-translational insertion of signal peptides recognized by the signal-recognition particle. Time-resolved RNA-sequencing revealed that degradation rates of inner-membrane-protein mRNAs are on average greater that those of the other mRNAs and that this selective destabilization of inner-membrane-protein mRNAs is abolished by dissociating the RNA degradosome from the membrane. Together, these results demonstrate that the bacterial transcriptome is spatially organized and suggest that this organization shapes the post-transcriptional dynamics of mRNAs.


Subject(s)
Escherichia coli/cytology , Escherichia coli/genetics , RNA Processing, Post-Transcriptional , Transcriptome , Microscopy, Fluorescence , Sequence Analysis, RNA , Spatial Analysis
18.
Nature ; 529(7586): 418-22, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760202

ABSTRACT

Metazoan genomes are spatially organized at multiple scales, from packaging of DNA around individual nucleosomes to segregation of whole chromosomes into distinct territories. At the intermediate scale of kilobases to megabases, which encompasses the sizes of genes, gene clusters and regulatory domains, the three-dimensional (3D) organization of DNA is implicated in multiple gene regulatory mechanisms, but understanding this organization remains a challenge. At this scale, the genome is partitioned into domains of different epigenetic states that are essential for regulating gene expression. Here we investigate the 3D organization of chromatin in different epigenetic states using super-resolution imaging. We classified genomic domains in Drosophila cells into transcriptionally active, inactive or Polycomb-repressed states, and observed distinct chromatin organizations for each state. All three types of chromatin domains exhibit power-law scaling between their physical sizes in 3D and their domain lengths, but each type has a distinct scaling exponent. Polycomb-repressed domains show the densest packing and most intriguing chromatin folding behaviour, in which chromatin packing density increases with domain length. Distinct from the self-similar organization displayed by transcriptionally active and inactive chromatin, the Polycomb-repressed domains are characterized by a high degree of chromatin intermixing within the domain. Moreover, compared to inactive domains, Polycomb-repressed domains spatially exclude neighbouring active chromatin to a much stronger degree. Computational modelling and knockdown experiments suggest that reversible chromatin interactions mediated by Polycomb-group proteins play an important role in these unique packaging properties of the repressed chromatin. Taken together, our super-resolution images reveal distinct chromatin packaging for different epigenetic states at the kilobase-to-megabase scale, a length scale that is directly relevant to genome regulation.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/genetics , Chromatin/metabolism , Drosophila melanogaster/genetics , Epigenesis, Genetic , Animals , Cell Line , Chromosome Positioning , Drosophila melanogaster/cytology , Epigenetic Repression , Fractals , Genome/genetics , Polycomb-Group Proteins/metabolism , Transcription, Genetic
19.
Nat Commun ; 7: 10291, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26759081

ABSTRACT

The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Intranuclear Space/metabolism , Polycomb Repressive Complex 1/metabolism , Amino Acid Motifs , Animals , Cell Line , Chromatin Immunoprecipitation , Drosophila , Fluorescent Antibody Technique , Microscopy , Molecular Dynamics Simulation , Optical Imaging , Polycomb-Group Proteins/metabolism , Polymers , Protein Structure, Quaternary , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Analysis, RNA
20.
Nat Commun ; 6: 7147, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25962338

ABSTRACT

Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single-nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin-specific chromosome positioning and gene expression on a cell-by-cell basis.


Subject(s)
Chromosome Painting/methods , Chromosomes/genetics , Haplotypes , In Situ Hybridization, Fluorescence/methods , Oligonucleotide Array Sequence Analysis/methods , Animals , Cell Line , Drosophila , Gene Library , Oligonucleotide Probes/metabolism , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL