Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(13): 8665-8670, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38495989

ABSTRACT

The reaction between benzene derivatives 1-4 and p-substituted benzenediazonium tetrafluoroborates 5a-c provided novel azo-coupling products in high yields under mild conditions. The monitoring of the reaction progress using 1H-NMR provided mechanistic information on both the relative reactivity of the reagents and the possibility to detect novel reaction intermediates.

2.
Molecules ; 29(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38202821

ABSTRACT

This review covers the last 25 years of the literature on analogs of suberoylanilide hydroxamic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has been focused on the synthesis and biological activity of compounds where the phenyl group (the surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length. Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many cases showed antiproliferative activity against human cancer cell lines.


Subject(s)
Amides , Histone Deacetylases , Humans , Vorinostat/pharmacology , Amides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Cell Line
3.
Molecules ; 29(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38257235

ABSTRACT

Juglone, a quinonic compound present in walnut extracts, was proposed as a restoring agent for hair keratin treated with permanent or discoloration processes. The proposed mechanism of restoration by juglone involves the formation of a Michael adduct between the quinone and the thiol moieties of cysteine residues. To this purpose, the first part of the present paper involved the spectroscopic study of the product of the reaction between juglone and N-acetyl-L-cysteine as a model compound. IR spectroscopy and Scanning Electron Microscopy (SEM) monitored the chemical and morphological variations induced by applying juglone to hair keratin. In order to simulate the most common hair treatments (i.e., permanent and discoloration), juglone was applied to hair that had been previously treated with a reducing agent, i.e., methyl thioglycolate (MT) or with bleaching agents (based on hydrogen peroxide and persulfates) followed by sodium hydrogen sulfite. IR spectroscopy allowed us to monitor the formation of Michael adducts between juglone and cysteine residues: the Michael adducts' content was related to the cysteine content of the samples. In fact, MT and sodium hydrogen sulfite favored the reduction of the disulfide bonds and increased the content of free cysteine residues, which can react with juglone. SEM analyses confirmed the trend observed by IR spectroscopy since hair samples treated with juglone adopted a more regular hair surface and more imbricated scales, thus supporting the possible use of juglone as a restoring agent for damaged hair keratins.


Subject(s)
Acetylcysteine , Keratins, Hair-Specific , Naphthoquinones , Sulfites , Microscopy, Electron, Scanning , Hair
4.
Molecules ; 28(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241724

ABSTRACT

The reaction of mer-(Ru(H)2(CO)(PPh3)3) (1) with one equivalent of thymine acetic acid (THAcH) unexpectedly produces the macrocyclic dimer k1(O), k2(N,O)-(Ru(CO)(PPh3)2THAc)2 (4) and, concomitantly, the doubly coordinated species k1(O), k2(O,O)-(Ru(CO)(PPh3)2THAc) (5). The reaction promptly forms a complicated mixture of Ru-coordinated mononuclear species. With the aim of shedding some light in this context, two plausible reaction paths were proposed by attributing the isolated or spectroscopically intercepted intermediates on the basis of DFT-calculated energetic considerations. The cleavage of the sterically demanding equatorial phosphine in the mer-species releases enough energy to enable self-aggregation, producing the stable, symmetric 14-membered binuclear macrocycle of 4. The k1-acetate iminol (C=N-OH) unit of the mer-tautomer k1(O)-(Ru(CO)(PPh3)2(THAc)) (2) likely exhibits a stronger nucleophilic aptitude than the prevalent N(H)-C(O) amido species, thus accomplishing extra stabilization through concomitant k2(N,O)-thymine heteroleptic side-chelation. Furthermore, both the ESI-Ms and IR simulation spectra validated the related dimeric arrangement in solution, in agreement with the X-ray determination of the structure. The latter showed tautomerization to the iminol form. The 1H NMR spectra in chlorinated solvents of the kinetic mixture showed the simultaneous presence of 4 and the doubly coordinated 5, in rather similar amounts. THAcH added in excess preferentially reacts with 2 or trans-k2(O,O)-(RuH(CO)(PPh3)2THAc) (3) rather than attacking the starting Complex 1, promptly forming the species of 5. The proposed reaction paths were inferred by spectroscopically monitoring the intermediate species, for which the results were strongly dependent on the of conditions the reaction (stoichiometry, solvent polarity, time, and the concentration of the mixture). The selected mechanism proved to be more reliable, due to the final dimeric product stereochemistry.

5.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241793

ABSTRACT

Metallodrugs represent a combination of multifunctionalities that are present concomitantly and can act differently on diverse biotargets. Their efficacy is often related to the lipophilic features exhibited both by long carbo-chains and the phosphine ligands. Three Ru(II) complexes containing hydroxy stearic acids (HSAs) were successfully synthesized in order to evaluate possible synergistic effects between the known antitumor activity of HSA bio-ligands and the metal center. HSAs were reacted with [Ru(H)2CO(PPh3)3] selectively affording O,O-carboxy bidentate complexes. The organometallic species were fully characterized spectroscopically using ESI-MS, IR, UV-Vis, and NMR techniques. The structure of the compound Ru-12-HSA was also determined using single crystal X-ray diffraction. The biological potency of ruthenium complexes (Ru-7-HSA, Ru-9-HSA, and Ru-12-HSA) was studied on human primary cell lines (HT29, HeLa, and IGROV1). To obtain detailed information about anticancer properties, tests for cytotoxicity, cell proliferation, and DNA damage were performed. The results demonstrate that the new ruthenium complexes, Ru-7-HSA and Ru-9-HSA, possess biological activity. Furthermore, we observed that the Ru-9-HSA complex shows increased antitumor activity on colon cancer cells, HT29.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ruthenium/chemistry , Ligands , HeLa Cells , Cell Proliferation , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor
6.
Molecules ; 27(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080409

ABSTRACT

A series of naphthoquinones, namely, 1,4-naphthoquinone, menadione, plumbagin, juglone, naphthazarin, and lawsone, were reacted with N-acetyl-L-cysteine, and except for lawsone, which did not react, the related adducts were obtained. After the tuning of the solvent and reaction conditions, the reaction products were isolated as almost pure from the complex reaction mixture via simple filtration and were fully characterized. Therefore, the aim of this work was to evaluate whether the antitumor activity of new compounds of 1,4-naphthoquinone derivatives leads to an increase in ROS in tumor cell lines of cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), and osteosarcoma (SaOS2, U2OS) and in normal dermal fibroblast (HDFa). The MTT assay was used to assay cell viability, the DCF-DA fluorescent probe to evaluate ROS induction, and cell-cycle analysis to measure the antiproliferative effect. Compounds 8, 9, and 12 showed a certain degree of cytotoxicity towards all the malignant cell lines tested, while compound 11 showed biological activity at higher IC50 values. Compounds 8 and 11 induced increases in ROS generation after 1 h of exposure, while after 48 h of treatment, only 8 induced an increase in ROS formation in HeLa cells. Cell-cycle analysis showed that compound 8 caused an increase in the number of G0/G1-phase cells in the HeLa experiment, while for the U2OS and SH-SY5Y cell lines, it led to an accumulation of S-phase cells. Therefore, these novel 1,4-naphthoquinone derivatives may be useful as antitumoral agents in the treatment of different cancers.


Subject(s)
Naphthoquinones , Neuroblastoma , Acetylcysteine/pharmacology , Cell Line, Tumor , HeLa Cells , Humans , Naphthoquinones/metabolism , Naphthoquinones/pharmacology , Reactive Oxygen Species/metabolism
7.
Molecules ; 27(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458594

ABSTRACT

A series of regioisomers of the hydroxystearic acid (HSA) was prepared, and the effect of the position of the hydroxyl group along the chain on a panel of human cancer cell lines was investigated. Among the various regioisomers, those carrying the hydroxyl at positions 5, 7, and 9 had growth inhibitor activity against various human tumor cell lines, including CaCo-2, HT29, HeLa, MCF7, PC3, and NLF cells. 10-HSA and 11-HSA showed a very weak effect. 8-HSA did not show inhibitory activity in all cell lines. The biological role of 7-HSA and 9-HSA is widely recognized, while little is known about the effects of 5-HSA. Therefore, the biological effects of 5-HSA in HeLa, HT29, MCF7, and NLF cell lines were investigated using the Livecyte's ptychography technology, which allows correlating changes in proliferation, motility, and morphology as a function of treatment at the same time. 5-HSA not only reduces cell proliferation but also induces changes in cell displacement, directionality, and speed. It is important to characterize the biological effects of 5-HSA, this molecule being an important component of fatty acyl esters of hydroxy fatty acids (FAHFA), a class of endogenous mammalian lipids with noticeable anti-diabetic and anti-inflammatory effects.


Subject(s)
Fatty Acids , Neoplasms , Animals , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Esters/pharmacology , Fatty Acids/pharmacology , Humans , Mammals
8.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948257

ABSTRACT

This research focuses on the X-ray structure of 4,6-dichloro-5-nitrobenzofuroxan 1 and of some of its amino derivatives (4a, 4e, 4g, and 4l) and on DFT calculations concerning the nucleophilic reactivity of 1. We have found that by changing the solvent used for crystallization, it is possible to obtain 4,6-dichloro-5-nitrobenzofuroxan (1) in different polymorphic structures. Moreover, the different torsional angles observed for the nitro group in 1 and in its amino derivatives (4a, 4e, 4g, and 4l) are strictly dependent on the steric hindrance of the substituent at C-4. DFT calculations on the course of the nucleophilic substitution confirm the role of the condensed furoxan ring in altering the aromaticity of the carbocyclic frame, while chlorine atoms strongly influence the dihedral angle and the rotational barrier of the nitro group. These results corroborate previous observations based on experimental kinetic data and give a deep picture of the reaction with amines, which proceeds via a "non-aromatic" nucleophilic substitution.


Subject(s)
Oxadiazoles/chemistry , Amines , Density Functional Theory , Molecular Structure , Nitrobenzenes/chemical synthesis , Nitrobenzenes/chemistry , Oxadiazoles/chemical synthesis , Solvents
9.
Data Brief ; 38: 107439, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34660859

ABSTRACT

Brown human hair was bleached three times (45 min × 3) and four times (45 min × 3 + 15 min) with commercial formulations containing persulfate salts and hydrogen peroxide. The hair samples were characterized by Raman and IR spectroscopy in the Attenuated Total Reflectance (ATR) mode to gain more insights into the possible secondary structure and Cα-Cß-S-S-Cß-Cα conformational changes induced by bleaching. The latter were evaluated through band-fitting procedures; the relative content of the disulfide bridges and oxidized sulfur species (cysteic acid, Bunte salt, cystine oxides) was assessed. The observed conformational changes could be significant in developing restoring agents to be used after hair decoloration. The use of two different spectroscopic techniques allowed to discriminate the information coming from the cortical region of hair (Raman) and the cuticle (ATR/IR). This article refers to "Structural investigation on damaged hair keratin treated with α,ß-unsaturated Michael acceptors used as repairing agents" (Di Foggia et al., Int. J. Biol. Macromol. 167 (2021) 620-632 https://doi.org/10.1016/j.ijbiomac.2020.11.194).

10.
Int J Mol Sci ; 22(14)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34299115

ABSTRACT

A series of novel hybrid compounds containing benzofuroxan and 2-aminothiazole moieties are synthesized via aromatic nucleophilic substitution reaction. Possible reaction pathways have been considered quantum-chemically, which allowed us to suggest the most probable products. The quantum chemical results have been proved by X-ray data on one compound belonging to the synthesized series. It was shown that the introduction of substituents to both the thiazole and amine moieties of the compounds under study strongly influences their UV/Vis spectra. Initial substances and obtained hybrid compounds have been tested in vitro as anticancer agents. Target compounds showed selectivity towards M-HeLa tumor cell lines and were found to be more active than starting benzofuroxan and aminothiazoles. Furthermore, they are considerably less toxic to normal liver cells compared to Tamoxifen. The mechanism of action of the studied compounds can be associated with the induction of apoptosis, which proceeds along the mitochondrial pathway. Thus, new hybrids of benzofuroxan are promising candidates for further development as anticancer agents.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzoxazoles/chemistry , Thiazoles/chemistry , Uterine Cervical Neoplasms/drug therapy , Apoptosis , Cell Proliferation , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Molecular Structure , Structure-Activity Relationship , Uterine Cervical Neoplasms/pathology
11.
Molecules ; 26(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525621

ABSTRACT

We synthesized five novel tryptamine derivatives characterized by the presence of an azelayl chain or of a 1,1,1-trichloroethyl group, in turn connected to another heterocyclic scaffold. The combination of tryptamin-, 1,1,1-trichloroethyl- and 2-aminopyrimidinyl- moieties produced compound 9 identified as the most active compound in hematological cancer cell lines (IC50 = 0.57-65.32 µM). Moreover, keeping constant the presence of the tryptaminic scaffold and binding it to the azelayl moiety, the compounds maintain biological activity. Compound 13 is still active against hematological cancer cell lines and shows a selective effect only on HT29 cells (IC50 = 0.006 µM) among solid tumor models. Compound 14 loses activity on all leukemic lines, while showing a high level of toxicity on all solid tumor lines tested (IC50 0.0015-0.469 µM).


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Factors/chemistry , Biological Factors/pharmacology , Tryptamines/chemistry , Tryptamines/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , HT29 Cells , Humans , Neoplasms/drug therapy
12.
Molecules ; 26(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513825

ABSTRACT

The roots of two cultivars of Paeonia, namely Paeonia officinalis "Rubra Plena" and Paeonia "Pink Hawaiian Coral", have been extracted with chloroform. The composition of the lipid fraction, analyzed by GC-MS technique, revealed the absence of paeonol and the presence of phenol, benzoic acid, fatty acid-and some sterol-derivatives. The chloroformic extracts have been tested on normal and several cancer cell lines but showed antiproliferative activity only on the ovarian carcinoma and the osteosarcoma. The biological activity of extracts was investigated mainly by confocal microscopy, flow cytometry and quantum phase imaging. The results indicated that the root extracts induced a hyperpolarization of mitochondria and an increase in reactive oxygen species levels, without inducing cell death. These effects are associated to an increased doubling time and a retarded confluence.


Subject(s)
Lipids/chemistry , Lipids/pharmacology , Paeonia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Benzoic Acid/chemistry , Benzoic Acid/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Fatty Acids/chemistry , Fatty Acids/pharmacology , Female , Hawaii , HeLa Cells , Humans , MCF-7 Cells , Mitochondria/drug effects , Osteosarcoma/drug therapy , Ovarian Neoplasms/drug therapy , Phenols/chemistry , Phenols/pharmacology , Reactive Oxygen Species/metabolism , Sterols/chemistry , Sterols/pharmacology
13.
Int J Biol Macromol ; 167: 620-632, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33279560

ABSTRACT

Many restoring formulations for damaged hair keratin have been developed. Some patents claim that the hair repair occurs through the reconstruction of disulfide bridges of keratin, through α,ß-unsaturated Michael acceptors, such as shikimic acid and bis-aminopropyl diglycol dimaleate. To gain more insights into the possible repairing mechanism, this study is aimed at assessing, by IR and Raman spectroscopies coupled to scanning electron microscopy (SEM), the structural changes induced in keratin from bleached hair by the treatment with commercial reconstructive agents as well as shikimic acid and dimethyl maleate, chosen as model compounds. Vibrational spectroscopy revealed that shikimic acid- and maleate-based restoring agents interacted with hair fibers modifying both their cortex and cuticle regions. None of the investigated treatments induced an increase in the SS disulfide bridges content of the hair cortex, although it cannot be excluded that this phenomenon could have occurred in the cuticle. SS rearrangements were found to occur. None of our results can be interpreted as direct evidence of the sulfa-Michael reaction/cross-linking. From a morphological point of view, beneficial effects of the restoring agents were observed by SEM analyses, in terms of a more regular hair surface and more imbricated scales.


Subject(s)
Hair/drug effects , Keratins, Hair-Specific/metabolism , Maleates/pharmacology , Shikimic Acid/pharmacology , Disulfides/chemistry , Hair/metabolism , Hair/ultrastructure , Humans , Keratins, Hair-Specific/chemistry , Maleates/chemistry , Microscopy, Electron, Scanning , Shikimic Acid/chemistry , Spectrum Analysis, Raman
14.
J Org Chem ; 85(21): 13472-13480, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33153266

ABSTRACT

The reaction rates for the nucleophilic aromatic substitution of 4,6-dichloro-5-nitrobenzofuroxan 1 with eight aliphatic amines (characterized by very different basicities/nucleophilicities) and three anilines have been measured in both methanol and toluene. The obtained rates have been related to the basicity (pKaH in water and Kb in benzene) or nucleophilicity (N Mayr constants) of the tested amines. The whole of the obtained kinetic data has furnished useful information on the high nucleophilic reactivity of benzofuroxan derivatives, which has been related essentially to two factors: the high electron-drawing ability/power of the condensed furoxan ring and the low aromatic character of the benzofuroxan system.

15.
Int J Mol Sci ; 21(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143206

ABSTRACT

The chiral (R)-10-hydroxystearic acid ((R)-10-HSA) is a positional homologue of both (R)-12-HSA and (R)-9-HSA with the OH group in an intermediate position. While (R)-12-HSA is one of the best-known low-molecular-weight organogelators, (R)-9-HSA is not, but it forms crystals in several solvents. With the aim to gain information on the structural role of hydrogen-bonding interactions of the carbinol OH groups, we investigated the behavior of (R)-10-HSA in various solvents. This isomer displays an intermediate behavior between (R)-9 and (R)-12-HSA, producing a stable gel exclusively in paraffin oil, while it crystallizes in other organic solvents. Here, we report the X-ray structure of a single crystal of (R)-10-HSA as well as some structural information on its polymorphism, obtained through X-ray Powder Diffraction (XRPD) and Infrared Spectroscopy (IR). This case study provides new elements to elucidate the structural determinants of the microscopic architectures that lead to the formation of organogels of stearic acid derivatives.


Subject(s)
Crystallization , Gels/chemistry , Solvents/chemistry , Stearic Acids/chemistry , Hydrogen Bonding , Molecular Weight , Stereoisomerism
16.
Molecules ; 25(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992652

ABSTRACT

Ovarian cancer remains the leading cause of mortality among gynecological tumors. Estrogen receptor beta (ERß) expression has been suggested to act as a tumor suppressor in epithelial ovarian cancer by reducing both tumor growth and metastasis. ERß expression abnormalities represent a critical step in the development and progression of ovarian cancer: for these reasons, its re-expression by genetic engineering, as well as the use of targeted ERß therapies, still constitute an important therapeutic approach. 3-{[2-chloro-1-(4-chlorobenzyl)-5-methoxy-6-methyl-1H-indol-3-yl]methylene}-5-hydroxy-6-methyl-1,3-dihydro-2H-indol-2-one, referred to here as compound 3, has been shown to have cytostatic as well cytotoxic effects on various hormone-dependent cancer cell lines. However, the mechanism of its anti-carcinogenic activity is not well understood. Here, we offer a possible explanation of such an effect in the human ovarian cancer cell line IGROV1. Chromatin binding protein assay and liquid chromatography mass spectrometry were exploited to localize and quantify compound 3 in cells. Molecular docking was used to prove compound 3 binding to ERß. Mass spectrometry-based approaches were used to analyze histone post-translational modifications. Finally, gene expression analyses revealed a set of genes regulated by the ERß/3 complex, namely CCND1, MYC, CDKN2A, and ESR2, providing possible molecular mechanisms that underline the observed antiproliferative effects.


Subject(s)
Estrogen Receptor beta , Gene Expression Regulation, Neoplastic/drug effects , Indoles , Molecular Docking Simulation , Neoplasm Proteins , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Estrogen Receptor beta/agonists , Estrogen Receptor beta/chemistry , Estrogen Receptor beta/metabolism , Female , Humans , Indoles/chemistry , Indoles/pharmacology , Neoplasm Proteins/agonists , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology
17.
ACS Omega ; 5(22): 12707-12715, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32548454

ABSTRACT

The well-known ability to selectively drive nanomagnetic materials coated with anticancer drugs into tumor cells suggested the synthesis and the characterization of magnetic nanoparticles (MNPs) functionalized with (R)-9-acetoxystearic acid, the acetic ester of (R)-9-hydroxystearic acid (9-HSA), an antiproliferative agent active against different cancer cells. The acyl chloride of (R)-9-acetoxystearic acid, synthesized in two steps from 9-HSA, was reacted with (3-aminopropyl)triethoxysilane, chosen as a linker between MNPs and the stearyl moiety. In the last step, the novel amide was bound to magnetite NPs by reaction with silyl groups. A detailed structural, chemical, and magnetic characterization of the obtained material proved that it possesses properties in agreement with the requirements for drug delivery, opening the possibility to further insights focused on the 9-HSA biomedical applications.

18.
Molecules ; 25(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570759

ABSTRACT

The fight against cancer is one of the most challenging tasks currently for lots of researchers in many fields, such as pharmaceuticals, medicine, and chemicals [...].


Subject(s)
Antineoplastic Agents , Drug Design , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Humans
19.
Molecules ; 25(2)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963693

ABSTRACT

Nine compounds bearing pyridinyl (or piperidinyl, benzimidazolyl, benzotriazolyl) groups bound to an azelayl moiety through an amide bond were synthesized. The structural analogy with some histone deacetylase inhibitors inspired their syntheses, seeking new selective histone deacetylase inhibitors (HDACi). The azelayl moiety recalls part of 9-hydroxystearic acid, a cellular lipid showing antiproliferative activity toward cancer cells with HDAC as a molecular target. Azelayl derivatives bound to a benzothiazolyl moiety further proved to be active as HDACi. The novel compounds were tested on a panel of both normal and tumor cell lines. Non-specific induction of cytotoxicity was observed in the normal cell line, while three of them induced a biological effect only on the osteosarcoma (U2OS) cell line. One of them induced a change in nuclear shape and size. Cell-cycle alterations are associated with post-transcriptional modification of both H2/H3 and H4 histones. In line with recent studies, revealing unexpected HDAC7 function in osteoclasts, molecular docking studies on the active molecules predicted their proneness to interact with HDAC7. By reducing side effects associated with the action of the first-generation inhibitors, the herein reported compounds, thus, sound promising as selective HDACi.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Aza Compounds/chemistry , Dicarboxylic Acids/chemistry , Heterocyclic Compounds/chemistry , Bone Neoplasms , Cell Line, Tumor , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Humans , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Molecular Structure , Osteosarcoma , Structure-Activity Relationship
20.
RSC Adv ; 10(57): 34670-34680, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-35514428

ABSTRACT

The SEAr/SNAr reaction between 7-chloro-4,6-dinitrobenzofuroxan (ClDNBF) and 2-morpholinyl-, 2-piperidinyl-, or 2-pyrrolidinylthiazole afforded unexpectedly two isomeric products, bearing the benzofuroxanyl moiety bound to the C-5 carbon atom of the thiazole ring. The relative ratio for the two isomers was dependent on temperature and solvent, suggesting the occurrence of an equilibrium between the two novel species. In order to investigate their structure and to design a plausible mechanistic pathway, a series of synthetic and spectroscopic experiments was planned. The isomer's structure was unambigously assigned when the reduction of furoxanyl to the furazanyl ring of the products gave exclusively a single species whose NMR data were coincident with those obtained by reacting the starting 2-aminothiazole derivatives with the 7-chloro-4,6-dinitrobenzofurazan (ClDNBZ). Possible mechanistic pathways might involve N-1-/N-3 oxide tautomerism or Boulton-Katritzky rearrangement and the current study is the first attempt to compare these two reactions. The data collected agree with the first one and DFT calculations permitted also a significant correlation with 13C NMR experimental data and the assignment of the structure of each isomer. Finally, only one Meisenheimer intermediate for each electrophile/nucleophile combination was isolated by coupling the 2-aminothiazole derivatives with 4,6-dinitrobenzofuroxan (DNBF).

SELECTION OF CITATIONS
SEARCH DETAIL
...