Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473827

ABSTRACT

Alternatively spliced tissue factor (asTF) promotes the progression of pancreatic ductal adenocarcinoma (PDAC) by activating ß1-integrins on PDAC cell surfaces. hRabMab1, a first-in-class humanized inhibitory anti-asTF antibody we recently developed, can suppress PDAC primary tumor growth as a single agent. Whether hRabMab1 has the potential to suppress metastases in PDAC is unknown. Following in vivo screening of three asTF-proficient human PDAC cell lines, we chose to make use of KRAS G12V-mutant human PDAC cell line PaCa-44, which yields aggressive primary orthotopic tumors with spontaneous spread to PDAC-relevant anatomical sites, along with concomitant severe leukocytosis. The experimental design featured orthotopic tumors formed by luciferase labeled PaCa-44 cells; administration of hRabMab1 alone or in combination with gemcitabine/paclitaxel (gem/PTX); and the assessment of the treatment outcomes on the primary tumor tissue as well as systemic spread. When administered alone, hRabMab1 exhibited poor penetration of tumor tissue; however, hRabMab1 was abundant in tumor tissue when co-administered with gem/PTX, which resulted in a significant decrease in tumor cell proliferation; leukocyte infiltration; and neovascularization. Gem/PTX alone reduced primary tumor volume, but not metastatic spread; only the combination of hRabMab1 and gem/PTX significantly reduced metastatic spread. RNA-seq analysis of primary tumors showed that the addition of hRabMab1 to gem/PTX enhanced the downregulation of tubulin binding and microtubule motor activity. In the liver, hRabMab1 reduced liver metastasis as a single agent. Only the combination of hRabMab1 and gem/PTX eliminated tumor cell-induced leukocytosis. We here demonstrate for the first time that hRabMab1 may help suppress metastasis in PDAC. hRabMab1's ability to improve the efficacy of chemotherapy is significant and warrants further investigation.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Thromboplastin , Gemcitabine , Antibodies, Monoclonal, Humanized/therapeutic use , Leukocytosis/drug therapy , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Deoxycytidine/pharmacology , Paclitaxel/therapeutic use
2.
BMC Gastroenterol ; 23(1): 65, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894870

ABSTRACT

BACKGROUND: Current quantitative approaches to assess chronic liver disease (CLD) severity have limitations. Further, portal vein thrombosis (PVT) pre-liver transplant (LT) is a major contributor to morbidity in CLD; the means of detecting and/or predicting PVT are limited. We sought to explore whether plasma coagulation factor activity levels can serve as a substitute for prothrombin time/international normalized ratio (PT/INR) in the Model for End-stage Liver Disease (MELD), and/or help assess the risk of PVT. METHODS: Plasma activity levels of Factor V (FV), Factor VIII (FVIII), Protein C (PC), and Protein S (PS) and the concentrations of D-dimer, sP-selectin, and asTF were assessed in two cohorts of CLD patients (ambulatory, n = 42; LT, n = 43). RESULTS: FV and PC activity levels strongly correlated with MELD scores, which enabled the development of a novel scoring system based on multiple linear regressions of the correlations of FV and PC activity with MELD-Na that substitutes PT/INR. Six-month and 1-year follow-up revealed that our novel approach was non-inferior to MELD-Na at predicting mortality. A significant inverse correlation between FVIII activity levels and PVT was found in the LT cohort (p = 0.010); FV and PS activity levels were in-trend (p = 0.069, p = 0.064). We developed a logistic regression-based compensation score to identify patients at risk of PVT. CONCLUSIONS: We demonstrate that FV and PC activity levels may be used to replace PT/INR in MELD scoring. We also show the potential of using the combination of FV, FVIII, and PS activity levels to assess the risk of PVT in CLD.


Subject(s)
End Stage Liver Disease , Liver Diseases , Venous Thrombosis , Humans , Portal Vein/pathology , Liver Cirrhosis , End Stage Liver Disease/complications , End Stage Liver Disease/surgery , Severity of Illness Index , Liver Diseases/complications , Liver Diseases/pathology , Blood Coagulation Factors/metabolism , Venous Thrombosis/diagnosis
3.
Oncogene ; 41(48): 5176-5185, 2022 11.
Article in English | MEDLINE | ID: mdl-36271029

ABSTRACT

Tissue Factor (TF) is the initiator of blood coagulation but also functions as a signal transduction receptor. TF expression in breast cancer is associated with higher tumor grade, metastasis and poor survival. The role of TF signaling on the early phases of metastasis has never been addressed. Here, we show an association between TF expression and metastasis as well as cancer stemness in 574 breast cancer patients. In preclinical models, blockade of TF signaling inhibited metastasis tenfold independent of primary tumor growth. TF blockade caused a reduction in epithelial-to-mesenchymal-transition, cancer stemness and expression of the pro-metastatic markers Slug and SOX9 in several breast cancer cell lines and in ex vivo cultured tumor cells. Mechanistically, TF forms a complex with ß1-integrin leading to inactivation of ß1-integrin. Inhibition of TF signaling induces a shift in TF-binding from α3ß1-integrin to α6ß4 and dictates FAK recruitment, leading to reduced epithelial-to-mesenchymal-transition and tumor cell differentiation. In conclusion, TF signaling inhibition leads to reduced pro-metastatic transcriptional programs, and a subsequent integrin ß1 and ß4-dependent reduction in metastasic dissemination.


Subject(s)
Breast Neoplasms , Thromboplastin , Humans , Female , Breast Neoplasms/pathology , Cell Line, Tumor , Integrin beta1/genetics , Integrin beta1/metabolism , Integrin alpha3beta1
4.
Vasc Biol ; 4(1): R35-R43, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35949299

ABSTRACT

As we enter year 3 of SARS-CoV-2 pandemic, long-term consequences of COVID-19 have become a major public health issue worldwide; however, the molecular and cellular underpinnings of 'long COVID' remain very poorly understood. A paradigm has recently emerged that thrombo-inflammatory consequences of SARS-CoV-2's impact on endothelial cells and platelets likely play a significant role in the development of chronic symptomatology associated with COVID-19. In this brief overview, we discuss the recent findings pertaining to the detection of SARS-CoV-2 virions in vascular cell subtypes, the contribution of the coagulation system to the development of 'long COVID', and the potential role of stem/progenitor cells in the viral and thrombotic dissemination in this disorder.

5.
Front Cardiovasc Med ; 8: 761488, 2021.
Article in English | MEDLINE | ID: mdl-34733899

ABSTRACT

Cardiovascular disease (CVD) and cancer often occur in the same individuals, in part due to the shared risk factors such as obesity. Obesity promotes adipose inflammation, which is pathogenically linked to both cardiovascular disease and cancer. Compared with Caucasians, the prevalence of obesity is significantly higher in African Americans (AA), who exhibit more pronounced inflammation and, in turn, suffer from a higher burden of CVD and cancer-related mortality. The mechanisms that underlie this association among obesity, inflammation, and the bidirectional risk of CVD and cancer, particularly in AA, remain to be determined. Socio-economic disparities such as lack of access to healthy and affordable food may promote obesity and exacerbate hypertension and other CVD risk factors in AA. In turn, the resulting pro-inflammatory milieu contributes to the higher burden of CVD and cancer in AA. Additionally, biological factors that regulate systemic inflammation may be contributory. Mutations in atypical chemokine receptor 1 (ACKR1), otherwise known as the Duffy antigen receptor for chemokines (DARC), confer protection against malaria. Many AAs carry a mutation in the gene encoding this receptor, resulting in loss of its expression. ACKR1 functions as a decoy chemokine receptor, thus dampening chemokine receptor activation and inflammation. Published and preliminary data in humans and mice genetically deficient in ACKR1 suggest that this common gene mutation may contribute to ethnic susceptibility to obesity-related disease, CVD, and cancer. In this narrative review, we present the evidence regarding obesity-related disparities in the bidirectional risk of CVD and cancer and also discuss the potential association of gene polymorphisms in AAs with emphasis on ACKR1.

6.
Cancers (Basel) ; 13(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34572880

ABSTRACT

In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.

7.
Front Oncol ; 11: 691685, 2021.
Article in English | MEDLINE | ID: mdl-34395257

ABSTRACT

In 2021, pancreatic ductal adenocarcinoma (PDAC) is the 3rd leading cause of cancer deaths in the United States. This is largely due to a lack of symptoms and limited treatment options, which extend survival by only a few weeks. There is thus an urgent need to develop new therapies effective against PDAC. Previously, we have shown that the growth of PDAC cells is suppressed when they are co-implanted with RabMab1, a rabbit monoclonal antibody specific for human alternatively spliced tissue factor (asTF). Here, we report on humanization of RabMab1, evaluation of its binding characteristics, and assessment of its in vivo properties. hRabMab1 binds asTF with a KD in the picomolar range; suppresses the migration of high-grade Pt45.P1 cells in Boyden chamber assays; has a long half-life in circulation (~ 5 weeks); and significantly slows the growth of pre-formed orthotopic Pt45.P1 tumors in athymic nude mice when administered intravenously. Immunohistochemical analysis of tumor tissue demonstrates the suppression of i) PDAC cell proliferation, ii) macrophage infiltration, and iii) neovascularization, whereas RNAseq analysis of tumor tissue reveals the suppression of pathways that promote cell division and focal adhesion. This is the first proof-of-concept study whereby a novel biologic targeting asTF has been investigated as a systemically administered single agent, with encouraging results. Given that hRabMab1 has a favorable PK profile and is able to suppress the growth of human PDAC cells in vivo, it comprises a promising candidate for further clinical development.

8.
Mol Ther ; 28(8): 1876-1886, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32516572

ABSTRACT

Phosphatidylserine (PS) is often externalized in viable pancreatic cancer cells and is therapeutically targetable using PS-selective drugs. One of the first-line treatments for advanced pancreatic cancer disease, gemcitabine (GEM), provides only marginal benefit to patients. We therefore investigated the therapeutic benefits of combining GEM and the PS-targeting drug, saposin C-dioleoylphosphatidylserine (SapC-DOPS), for treating pancreatic ductal adenocarcinoma (PDAC). Using cell-cycle analyses and a cell surface PS-based sorting method in vitro, we observed an increase in surface PS as cells progress through the cell cycle from G1 to G2/M. We also observed that GEM treatment preferentially targets G1 phase cells that have low surface PS, resulting in an increased median surface PS level of PDAC cells. Inversely, SapC-DOPS preferentially targets high surface PS cells that are predominantly in the G2/M phase. Finally, combination therapy in subcutaneous and orthotopic PDAC tumors in vivo with SapC-DOPS and GEM or Abraxane (Abr)/GEM (one of the current standards of care) significantly inhibits tumor growth and increases survival compared with individual treatments. Our studies confirm a surface PS and cell cycle-based enhancement of cancer cytotoxicity following SapC-DOPS treatment in combination with GEM or Abr/GEM. Thus, PDAC patients treated with Abr/GEM may benefit from concurrent administration of SapC-DOPS.


Subject(s)
Antineoplastic Agents/administration & dosage , Deoxycytidine/analogs & derivatives , Nanoparticles , Phosphatidylserines/administration & dosage , Animals , Biomarkers , Cell Cycle/drug effects , Cell Line, Tumor , Deoxycytidine/administration & dosage , Disease Models, Animal , Flow Cytometry , Gene Expression , Humans , Mice , Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Xenograft Model Antitumor Assays , Gemcitabine
10.
Eur J Gastroenterol Hepatol ; 30(12): 1470-1475, 2018 12.
Article in English | MEDLINE | ID: mdl-30113368

ABSTRACT

OBJECTIVES: In patients with chronic liver diseases, hypercoagulability can contribute to the progression of fibrosis and complications of cirrhosis. Tissue factor (TF) is a transmembrane glycoprotein that initiates the extrinsic pathway of blood coagulation. Recent investigations have established that TF is elevated in patients with pancreatic cancer, blood disorders, diabetes, and cardiovascular disease. Alternatively spliced tissue factor (asTF), a secreted form of TF, induces angiogenesis and exhibits low-level procoagulant activity. The aim of this study was to investigate whether the circulating levels of asTF are elevated in the plasma of patients with liver disease. MATERIALS AND METHODS: In a single-center study, we retrospectively analyzed asTF plasma levels in healthy participants and patients having stage F0-F3 liver fibrosis, liver cirrhosis, as well as hepatocellular carcinoma (HCC). AsTF plasma levels were measured using a sandwich enzyme-linked immunosorbent assay. Values were expressed as median with interquartile range (IQR). RESULTS: The lowest median plasma asTF concentration (94 pg/ml, IQR: 33-275) was found in the healthy control group. The patients with low-grade liver fibrosis (F0-F1 group) displayed the highest median asTF concentration (404 pg/ml, IQR: 277-789). Significant differences between the asTF levels in the plasma of healthy participants and those in patients with grade F0-F1 fibrosis (P<0.001), patients with grade F2-F3 fibrosis (P=0.019), patients with cirrhosis (P=0.004), and patients with HCC (P<0.001) were found using a Wilcoxon rank-sum test. Treatment-naive patients with HCC had significantly higher asTF levels (P=0.018) than those receiving treatment. AsTF levels were found to increase with worsening Child-Pugh scores and heightened liver disease activity. CONCLUSION: AsTF levels are elevated in patients with chronic liver diseases, which increase with worsening Child-Pugh scores and decrease following HCC therapy.


Subject(s)
Alternative Splicing , Liver Diseases/blood , Thromboplastin/analysis , Thromboplastin/genetics , Adult , Biomarkers/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Chronic Disease , Female , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/genetics , Liver Diseases/genetics , Liver Neoplasms/blood , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
11.
Lab Invest ; 98(10): 1300-1310, 2018 10.
Article in English | MEDLINE | ID: mdl-29572498

ABSTRACT

High-fat meal (HFM) consumption can produce acute lipemia and trigger myocardial infarction in patients with atherosclerosis, but the mechanisms are poorly understood. Erythrocytes (red blood cells, RBCs) intimately interact with inflammatory cells and blood vessels and play a complex role in regulating vascular function. Chronic high-fat feeding in mice induces pathological RBC remodeling, suggesting a novel link between HFM, RBCs, and vascular dysfunction. However, whether acute HFM can induce RBC remodeling in humans is unknown. Ten healthy individuals were subjected to biochemical testing and assessment of endothelial-dependent flow-mediated dilation (FMD) before and after a single HFM or iso-caloric meal (ICM). Following the HFM, triglyceride, cholesterol, and free fatty acid levels were all significantly increased, in conjunction with impaired post-prandial FMD. Additionally, peripheral blood smears demonstrated microcytes, remodeled RBCs, and fatty monocytes. Increased intracellular ROS and nitration of protein band 3 was detected in RBCs following the HFM. The HFM elevated plasma and RBC-bound myeloperoxidase (MPO), which was associated with impaired FMD and oxidation of HDL. Monocytic cells exposed to lipid in vitro released MPO, while porcine coronary arteries exposed to fatty acids ex vivo took up MPO. We demonstrate in humans that a single HFM induces pathological RBC remodeling and concurrently elevates MPO, which can potentially enter the blood vessel wall to trigger oxidative stress and destabilize vulnerable plaques. These novel findings may have implications for the short-term risk of HFM consumption and alimentary lipemia in patients with atherosclerosis.


Subject(s)
Diet, High-Fat/adverse effects , Endothelium, Vascular/physiology , Erythrocytes/physiology , Adult , Animals , Blood Sedimentation , Coronary Vessels/metabolism , Humans , Male , Peroxidase/blood , Swine , Young Adult
12.
Mol Cell Endocrinol ; 473: 79-88, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29341885

ABSTRACT

OBJECTIVE: Inflammation in adipose tissues in obesity promotes insulin resistance and metabolic disease. The Duffy antigen receptor for chemokines (DARC) is a promiscuous non-signaling receptor expressed on erythrocytes and other cell types that modulates tissue inflammation by binding chemokines such as monocyte chemoattractant protein-1 (MCP-1) and by acting as a chemokine reservoir. DARC allelic variants are common in humans, but the role of DARC in modulating obesity-related metabolic disease is unknown. METHODS: We examined body weight gain, tissue adiposity, metabolic parameters and inflammatory marker expression in wild-type and DARC knockout mice fed a chow diet (CD) and high fat diet (HFD). RESULTS: Compared to wild-type mice, HFD-fed DARC knockout mice developed glucose intolerance and insulin resistance independent of increases in body weight or adiposity. Interestingly, insulin sensitivity was also diminished in lean male DARC knockout mice fed a chow diet. Insulin production was not reduced by DARC gene deletion, and plasma leptin levels were similar in HFD fed wild-type and DARC knockout mice. MCP-1 levels in plasma rose significantly in the HFD fed wild-type mice, but not in the DARC knockout mice. Conversely, adipose tissue MCP-1 levels were higher, and more macrophage crown-like structures were detected, in the HFD fed DARC knockout mice as compared with the wild-type mice, consistent with augmented adipose tissue inflammation that is not accurately reflected by plasma levels of DARC-bound MCP-1 in these mice. CONCLUSIONS: These findings suggest that DARC regulates metabolic function and adipose tissue inflammation, which may impact obesity-related disease in ethnic populations with high frequencies of DARC allelic variants.


Subject(s)
Adipose Tissue , Diet, High-Fat , Feeding Behavior , Gene Deletion , Inflammation , Insulin Resistance , Receptors, Cell Surface , Animals , Female , Male , Adipose Tissue/pathology , Adiposity , Duffy Blood-Group System/metabolism , Glucose Intolerance/pathology , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/metabolism , Weight Gain
13.
Lab Invest ; 96(12): 1234-1245, 2016 12.
Article in English | MEDLINE | ID: mdl-27721473

ABSTRACT

Molecules of the coagulation pathway predispose patients to cancer-associated thrombosis and also trigger intracellular signaling pathways that promote cancer progression. The primary transcript of tissue factor, the main physiologic trigger of blood clotting, can undergo alternative splicing yielding a secreted variant, termed asTF (alternatively spliced tissue factor). asTF is not required for normal hemostasis, but its expression levels positively correlate with advanced tumor stages in several cancers, including pancreatic adenocarcinoma. The asTF-overexpressing pancreatic ductal adenocarcinoma cell line Pt45.P1/asTF+ and its parent cell line Pt45.P1 were tested for growth and mobility under normoxic conditions that model early-stage tumors, and in the hypoxic environment of late-stage cancers. asTF overexpression in Pt45.P1 cells conveys increased proliferative ability. According to cell cycle analysis, the major fraction of Pt45.P1/asTF+ cells reside in the dividing G2/M phase of the cell cycle, whereas the parental Pt45.P1 cells are mostly confined to the quiescent G0/G1 phase. asTF overexpression is also associated with significantly higher mobility in cells plated under either normoxia or hypoxia. A hypoxic environment leads to upregulation of carbonic anhydrase IX (CAIX), which is more pronounced in Pt45.P1/asTF+ cells. Inhibition of CAIX by the compound U-104 significantly decreases cell growth and mobility of Pt45.P1/asTF+ cells in hypoxia, but not in normoxia. U-104 also reduces the growth of Pt45.P1/asTF+ orthotopic tumors in nude mice. CAIX is a novel downstream mediator of asTF in pancreatic cancer, particularly under hypoxic conditions that model late-stage tumor microenvironment.


Subject(s)
Alternative Splicing , Antigens, Neoplasm/metabolism , Apoenzymes/metabolism , Carbonic Anhydrase IX/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/metabolism , Thromboplastin/metabolism , Alternative Splicing/drug effects , Animals , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoenzymes/genetics , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase IX/chemistry , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Induction/drug effects , G2 Phase/drug effects , Humans , Mice, Nude , Neoplasm Proteins/agonists , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Staging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Recombinant Proteins/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thromboplastin/genetics , Tumor Hypoxia , Xenograft Model Antitumor Assays
14.
Oncotarget ; 7(18): 25264-75, 2016 May 03.
Article in English | MEDLINE | ID: mdl-26967388

ABSTRACT

Alternatively spliced Tissue Factor (asTF) is a secreted form of Tissue Factor (TF), the trigger of blood coagulation whose expression levels are heightened in several forms of solid cancer, including pancreatic ductal adenocarcinoma (PDAC). asTF binds to ß1 integrins on PDAC cells, whereby it promotes tumor growth, metastatic spread, and monocyte recruitment to the stroma. In this study, we determined if targeting asTF in PDAC would significantly impact tumor progression. We here report that a novel inhibitory anti-asTF monoclonal antibody curtails experimental PDAC progression. Moreover, we show that tumor-derived asTF is able to promote PDAC primary growth and spread during early as well as later stages of the disease. This raises the likelihood that asTF may comprise a viable target in early- and late-stage PDAC. In addition, we show that TF expressed by host cells plays a significant role in PDAC spread. Together, our data demonstrate that targeting asTF in PDAC is a novel strategy to stem PDAC progression and spread.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Thromboplastin/antagonists & inhibitors , Alternative Splicing , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Humans , Mice , Mice, Nude
15.
Circulation ; 132(20): 1898-908, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26467254

ABSTRACT

BACKGROUND: High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). METHODS AND RESULTS: A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC(-/-) mice. In RBCs from HFD-fed wild-type and DARC(-/-) mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. CONCLUSIONS: RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic.


Subject(s)
Atherosclerosis/metabolism , Diet, High-Fat/adverse effects , Erythrocytes/metabolism , Obesity/metabolism , Animals , Atherosclerosis/etiology , Atherosclerosis/pathology , Erythrocytes/pathology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/pathology , Phagocytosis/physiology
16.
Semin Thromb Hemost ; 41(7): 700-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26408917

ABSTRACT

Tissue factor (TF), the main trigger of blood coagulation, is essential for normal hemostasis. Over the past 20 years, heightened intravascular levels and activity of TF have been increasingly perceived as an entity that significantly contributes to venous as well as arterial thrombosis. Various forms of the TF protein in the circulation have been described and proposed to be thrombogenic. Aside from cell and vessel wall-associated TF, several forms of non-cell-associated TF circulate in plasma and may serve as a causative factor in thrombosis. At the present time, no firm consensus exists regarding the extent, the vascular setting(s), and/or the mechanisms by which such TF forms contribute to thrombus initiation and propagation. Here, we summarize the existing paradigms and recent, sometimes paradigm-shifting findings elucidating the structural, mechanistic, and pathophysiological characteristics of plasma-borne TF.


Subject(s)
Thromboplastin/metabolism , Thrombosis/metabolism , Animals , Humans , Protein Isoforms/metabolism , Thrombosis/pathology
17.
Ann Surg Oncol ; 22 Suppl 3: S1206-11, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25963480

ABSTRACT

BACKGROUND: Circulating ('blood-borne') tissue factor (TF) is implicated in the pathogenesis of several chronic conditions, most notably cardiovascular disease, diabetes, and cancer. Full-length TF is an integral membrane protein, while alternatively spliced TF (asTF) can be secreted and, owing to its unique C-terminus, selectively detected in bio-specimens. The predictive and/or prognostic value of asTF in the circulation is unknown. In a retrospective study, we measured levels of circulating asTF in healthy subjects and individuals with acute coronary syndrome (ACS), diabetes mellitus (DM), ongoing ACS + DM, and pancreatic ductal adenocarcinoma (PDAC). METHODS: The prototype-tailored procedure (Diagnostica Stago) was used to measure asTF in plasma from 205 subjects. RESULTS: There was no significant difference between the proportion of healthy subjects with asTF ≥200 pg/mL and those with ACS, DM, or ACS + DM. The proportion of pancreatic cancer patients (n = 43; PDAC: 42; pancreatic neuroendocrine tumor: 1) with asTF levels ≥200 pg/mL was significantly higher than in healthy subjects; asTF levels ≥200 pg/mL were detected more often in patients with unresectable disease irrespective of initial evaluation and/or preoperative carbohydrate antigen 19-9 (CA19-9) levels. CONCLUSIONS: While asTF levels ≥200 pg/mL are not observed with increased frequency in patients with ACS and/or DM, they do occur more frequently in the plasma of patients with pancreatic cancer and are associated with lower likelihood of tumor resectability, irrespective of the preoperative diagnosis. asTF may thus have utility as a novel marker of aggressive pancreatic tumor phenotype.


Subject(s)
Acute Coronary Syndrome/pathology , Alternative Splicing/genetics , Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/secondary , Diabetes Mellitus/pathology , Pancreatic Neoplasms/pathology , Thromboplastin/analysis , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/genetics , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/genetics , Case-Control Studies , Diabetes Mellitus/blood , Diabetes Mellitus/genetics , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Staging , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Prognosis , Retrospective Studies , Thromboplastin/genetics
18.
Arterioscler Thromb Vasc Biol ; 34(8): 1723-30, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24947528

ABSTRACT

OBJECTIVE: Perivascular adipose tissue (PVAT) expands during obesity, is highly inflamed, and correlates with coronary plaque burden and increased cardiovascular risk. We tested the hypothesis that PVAT contributes to the vascular response to wire injury and investigated the underlying mechanisms. APPROACH AND RESULTS: We transplanted thoracic aortic PVAT from donor mice fed a high-fat diet to the carotid arteries of recipient high-fat diet-fed low-density lipoprotein receptor knockout mice. Two weeks after transplantation, wire injury was performed, and animals were euthanized 2 weeks later. Immunohistochemistry was performed to quantify adventitial macrophage infiltration and neovascularization and neointimal lesion composition and size. Transplanted PVAT accelerated neointimal hyperplasia, adventitial macrophage infiltration, and adventitial angiogenesis. The majority of neointimal cells in PVAT-transplanted animals expressed α-smooth muscle actin, consistent with smooth muscle phenotype. Deletion of monocyte chemoattractant protein-1 in PVAT substantially attenuated the effects of fat transplantation on neointimal hyperplasia and adventitial angiogenesis, but not adventitial macrophage infiltration. Conditioned medium from perivascular adipocytes induced potent monocyte chemotaxis in vitro and angiogenic responses in cultured endothelial cells. CONCLUSIONS: These findings indicate that PVAT contributes to the vascular response to wire injury, in part through monocyte chemoattractant protein-1-dependent mechanisms.


Subject(s)
Adipose Tissue/transplantation , Carotid Artery Injuries/metabolism , Chemokine CCL2/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima , Actins/metabolism , Adipocytes/metabolism , Adipocytes/transplantation , Adipose Tissue/metabolism , Animals , Biomarkers/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/etiology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Cells, Cultured , Chemokine CCL2/deficiency , Chemokine CCL2/genetics , Chemotaxis , Coculture Techniques , Culture Media, Conditioned/metabolism , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/metabolism , Humans , Hyperplasia , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neovascularization, Pathologic , Phenotype , Receptors, LDL/deficiency , Receptors, LDL/genetics , Signal Transduction , Time Factors , Transendothelial and Transepithelial Migration
19.
PLoS One ; 9(5): e97793, 2014.
Article in English | MEDLINE | ID: mdl-24879059

ABSTRACT

Tissue factor (TF) triggers blood coagulation and is translated from two mRNA splice isoforms, encoding membrane-anchored full-length TF (flTF) and soluble alternatively-spliced TF (asTF). The complete knockout of TF in mice causes embryonic lethality associated with failure of the yolk sac vasculature. Although asTF plays roles in postnatal angiogenesis, it is unknown whether it activates coagulation sufficiently or makes previously unrecognized contributions to sustaining integrity of embryonic yolk sac vessels. Using gene knock-in into the mouse TF locus, homozygous asTF knock-in (asTFKI) mice, which express murine asTF in the absence of flTF, exhibited embryonic lethality between day 9.5 and 10.5. Day 9.5 homozygous asTFKI embryos expressed asTF protein, but no procoagulant activity was detectable in a plasma clotting assay. Although the α-smooth-muscle-actin positive mesodermal layer as well as blood islands developed similarly in day 8.5 wild-type or homozygous asTFKI embryos, erythrocytes were progressively lost from disintegrating yolk sac vessels of asTFKI embryos by day 10.5. These data show that in the absence of flTF, asTF expressed during embryonic development has no measurable procoagulant activity, does not support embryonic vessel stability by non-coagulant mechanisms, and fails to maintain a functional vasculature and embryonic survival.


Subject(s)
Alternative Splicing , Embryonic Development/genetics , Thromboplastin/genetics , Animals , Blood Coagulation/genetics , Female , Gene Knock-In Techniques , Homozygote , Mice , Neovascularization, Physiologic/genetics , Protein Structure, Tertiary , Thromboplastin/chemistry , Thromboplastin/metabolism , Yolk Sac/blood supply , Yolk Sac/embryology
20.
Int J Cancer ; 134(1): 9-20, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-23754313

ABSTRACT

Alternatively spliced tissue factor (asTF) promotes neovascularization and monocyte recruitment via integrin ligation. While asTF mRNA has been detected in some pancreatic ductal adenocarcinoma (PDAC) cell lines and increased asTF expression can promote PDAC growth in a subcutaneous model, the expression of asTF protein in bona fide PDAC lesions and/or its role in metastatic spread are yet to be ascertained. We here report that asTF protein is abundant in lesional and stromal compartments of the five studied types of carcinoma including PDAC. Analysis of 29 specimens of PDAC revealed detectable asTF in >90% of the lesions with a range of staining intensities. asTF levels in PDAC lesions positively correlated with the degree of monocyte infiltration. In an orthotopic model, asTF-overexpressing high-grade PDAC cell line Pt45P1/asTF+ produced metastases to distal lymph nodes, which stained positive for asTF. PDAC cells stimulated with and/or overexpressing asTF exhibited upregulation of genes implicated in PDAC progression and metastatic spread. Pt45P1/asTF+ cells displayed higher coagulant activity compared to Pt45P1 cells; the same effect was observed for cell-derived microparticles (MPs). Our findings demonstrate that asTF is expressed in PDAC and lymph node metastases and potentiates PDAC spread in vivo. asTF elicits global changes in gene expression likely involved in tumor progression and metastatic dissemination, and it also enhances the procoagulant potential of PDAC cells and cell-derived MPs. Thus, asTF may comprise a novel therapeutic target to treat PDAC and, possibly, its thrombotic complications.


Subject(s)
Alternative Splicing , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Thromboplastin/genetics , Animals , Blood Coagulation/physiology , Blotting, Western , Flow Cytometry , Heterografts , Humans , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Tissue Array Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...