Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 799, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956304

ABSTRACT

In this paper, we propose a fluorescence-lifetime imaging microscopy (FLIM) multiplexing system based on the fluorogen-activating protein FAST. This genetically encoded fluorescent labeling platform employs FAST mutants that activate the same fluorogen but provide different fluorescence lifetimes for each specific protein-dye pair. All the proposed probes with varying lifetimes possess nearly identical and the smallest-in-class size, along with quite similar steady-state optical properties. In live mammalian cells, we target these chemogenetic tags to two intracellular structures simultaneously, where their fluorescence signals are clearly distinguished by FLIM. Due to the unique structure of certain fluorogens under study, their complexes with FAST mutants display a monophasic fluorescence decay, which may facilitate enhanced multiplexing efficiency by reducing signal cross-talks and providing optimal prerequisites for signal separation upon co-localized and/or spatially overlapped labeling.


Subject(s)
Fluorescent Dyes , Microscopy, Fluorescence , Microscopy, Fluorescence/methods , Fluorescent Dyes/chemistry , Humans , Animals , Fluorescence , Mutation
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474299

ABSTRACT

NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.


Subject(s)
Fluorescent Dyes , Proteins , Fluorescent Dyes/chemistry
3.
Int J Mol Sci ; 24(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37373071

ABSTRACT

In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells.


Subject(s)
Coloring Agents , Green Fluorescent Proteins , Solvents , Spectrometry, Fluorescence
4.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175667

ABSTRACT

In this work, we showed that the well-known NanoLuc luciferase can act as a fluorogen activating protein for various arylidene-imidazolones structurally similar to the Kaede protein chromophore. We showed that such compounds can be used as fluorescent sensors for this protein and can also be used in pairs with it in fluorescent microscopy as a genetically encoded tag.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/metabolism , Luciferases/genetics , Microscopy, Fluorescence
5.
Materials (Basel) ; 16(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36769920

ABSTRACT

Poly(vinyl trimethylsilane) (PVTMS) films were subjected to direct surface fluorination in liquid medium (perfluorodecalin). The samples were investigated using several techniques: SEM-XEDS, XPS, ATR-IR, and contact angle measurement. The methods used allowed us to estimate chemical changes occurring because of the treatment. ATR-IR showed that most of the changes occurred in the Si(CH3)3 group. Monofluorinated Si(CH3)3 groups formed in the near-surface layer (Ge crystal, 0.66 µm penetration) after 30 min of fluorination, and then di- and trifluorinated groups appeared. Oxidation of the film with oxygen was also shown with the use of ZnSe crystal (2 µm penetration). The XPS method allowed an assessment of the ratio of the main elements at the surface of the fluorinated film. Two different exponential models were proposed to fit the experimental data of SEM-XEDS. Based on the model with the intercept, the depth of fluorination was estimated to be ≤1.1 µm, which is consistent with the result from the literature for the gas-phase fluorination. Contact angle measurements showed that oxidation of the PVTMS surface prevailed for the first 45 min of fluorination (surface hydrophilization) with a subsequent fluorine content increase and hydrophobization of the surface upon 60 min of fluorination.

6.
Redox Biol ; 60: 102604, 2023 04.
Article in English | MEDLINE | ID: mdl-36640726

ABSTRACT

Oxidative stress, a state of disrupted redox signaling, reactive oxygen species (ROS) overproduction, and oxidative cell damage, accompanies numerous brain pathologies, including aging-related dementia and Alzheimer's disease, the most common neurodegenerative disorder of the elderly population. However, a causative role of neuronal oxidative stress in the development of aging-related cognitive decline and neurodegeneration remains elusive because of the lack of approaches for modeling isolated oxidative injury in the brain. Here, we present a chemogenetic approach based on the yeast flavoprotein d-amino acid oxidase (DAAO) for the generation of intraneuronal hydrogen peroxide (H2O2). To validate this chemogenetic tool, DAAO and HyPer7, an ultrasensitive genetically encoded H2O2 biosensor, were targeted to neurons. Changes in the fluorescence of HyPer7 upon treatment of neurons expressing DAAO with d-norvaline (D-Nva), a DAAO substrate, confirmed chemogenetically induced production of intraneuornal H2O2. Then, using the verified chemogenetic tool, we emulated isolated intraneuronal oxidative stress in acute brain slices and, using electrophysiological recordings, revealed that it does not alter basal synaptic transmission and the probability of neurotransmitter release from presynaptic terminals but reduces long-term potentiation (LTP). Moreover, treating neurons expressing DAAO with D-Nva via the patch pipette also decreases LTP. This observation indicates that isolated oxidative stress affects synaptic plasticity at single cell level. Our results broaden the toolset for studying normal redox regulation in the brain and elucidating the role of oxidative stress to the pathogenesis of cognitive aging and the early stages of aging-related neurodegenerative diseases. The proposed approach is useful for identification of early markers of neuronal oxidative stress and may be used in screens of potential antioxidants effective against neuronal oxidative injury.


Subject(s)
Hydrogen Peroxide , Oxidative Stress , Humans , Aged , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species/pharmacology , Antioxidants/pharmacology , Neuronal Plasticity/physiology
7.
Polymers (Basel) ; 14(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36501547

ABSTRACT

A direct fluorination technique was applied for the surface treatment of PIM-1 films in a liquid phase (perfluorodecalin). The fluorinated samples were analyzed by various instrumental techniques. ATR-IR spectroscopy showed that the fluorination predominantly takes place in methylene- and methyl-groups. Cyano-groups, aromatic hydrogens and the aromatic structure of the PIM-1 repeat unit were shown to be relatively stable at the fluorination conditions. XPS confirmed that the concentration of fluorine, as well as oxygen, in the near surface layer (~1 nm) increases with fluorination time. C1s and O1s surface spectra of the fluorinated PIM-1 samples indicated an appearance of newly-formed C-F and C-O functional groups. Scanning electron microscopy and X-ray energy-dispersive spectroscopy of the fluorinated PIM-1 samples showed an increase of the fluorine concentration at the surface (~0.1-1 µm) with the treatment duration. Analysis of the slices of the PIM-1 films demonstrated a decline of the fluorine content within several microns of the film depth. The decline increased with the fluorination time. A model of fluorine concentration dependence on the film depth and treatment duration was suggested. A change in the specific free surface energy as a result of PIM-1 fluorination was revealed. The fluorination time was shown to affect the surface energy (γSV), providing its shift from a low value (25 mJ∙m-2), corresponding to tetrafluoroethylene, up to a relatively high value, corresponding to a hydrophilic surface.

8.
J Asthma ; 59(1): 105-114, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33086883

ABSTRACT

OBJECTIVE: To develop and validate a prediction risk score for identification of children at risk of developing life-threatening asthma (LTA). METHODS: Our study utilized existing medical records and retrospective analysis to develop and validate a risk score. The study population included children aged 2-17 years, admitted with a primary diagnosis of asthma, to Sydney Children's Hospital between 2011-2016. Children admitted in the intensive care unit with asthma at risk of LTA (cases) and those admitted into general ward (comparison group), were randomly divided into a derivation and a validation cohort. Candidate predictors from derivation cohort were selected through multivariable regression, which were used to estimate each child's risk of developing LTA in the validation cohort. Predictive performance of the risk score was evaluated by the area under the receiver operating characteristic curve (AUROC) and Hosmer-Lemeshow goodness-of-fit test. RESULTS: The study population comprised of 1171 children; 586 in the derivation and 585 in the validation cohort. Four independent candidate variables from derivation cohort (age at admission, socioeconomic status, a family history of asthma/atopy and previous asthma hospitalizations) were retained in the predictive model (AUROC 0.759; 95% CI, 0.694-0.823), with a sensitivity of 78.5% and specificity of 46.6%. CONCLUSIONS: Our risk algorithm based on routinely collected clinical data may be used to develop a user-friendly risk score for early identification and monitoring of children at risk of developing LTA.


Subject(s)
Asthma , Area Under Curve , Asthma/diagnosis , Asthma/epidemiology , Child , Humans , Retrospective Studies , Risk Assessment , Risk Factors
9.
Life Sci Space Res (Amst) ; 30: 45-54, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34281664

ABSTRACT

In a study on primates (Macaca mulatta), neurobiological and radiobiological effects have been studied of the synchronous combined action of 7-day antiorthostatic hypokinesia and exposure of the monkeys' head first to γ-rays during 24 h and then to accelerated 12C ions. The neurobiological effects were evaluated by the cognitive functions which model the basic elements of operator activity and the concentration of monoamines and their metabolites in peripheral blood. The radiobiological effects were evaluated by the chromosomal aberration and DNA double-strand break (DSB) yield in peripheral blood lymphocytes. The results of the cognitive function research show that the typological features of the animals' higher nervous activity are the prevailing factor that determines changes in these functions. The monkey of the strong balanced type effectively retained its cognitive functions after the exposures, while in the weak unbalanced type animals these functions were impaired. These changes went along with a decrease in the concentration of monoamines and their metabolites and an increase in the DNA DSB and chromosomal aberration yield in lymphocytes.


Subject(s)
Gravitation , Lymphocytes , Animals , Cognition , Cytogenetic Analysis , Haplorhini
11.
Polymers (Basel) ; 12(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260515

ABSTRACT

Direct fluorination of polymers is a widely utilized technique for chemical modification. Such introduction of fluorine into the chemical structure of polymeric materials leads to laminates with highly fluorinated surface layer. The physicochemical properties of this layer are similar to those of perfluorinated polymers that differ by a unique combination of chemical resistance, weak adhesion, low cohesion, and permittivity, often barrier properties, etc. Surface modification by elemental fluorine allows one to avoid laborious synthesis of perfluoropolymers and impart such properties to industrial polymeric materials. The current review is devoted to a detailed consideration of wetting by water, energy characteristics of surfaces, adhesion, mechanical and electrical properties of the polymers, and composites after the direct fluorination.

12.
Ann Cardiothorac Surg ; 8(1): 1-8, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30854307

ABSTRACT

BACKGROUND: Despite advances in management techniques and medical therapy, refractory cardiogenic shock remains a life-threatening condition with high mortality rates. The present systematic review and meta-analysis aims to explore the outcomes associated with venoarterial extracorporeal membrane oxygenation (VA-ECMO) use in the setting of refractory cardiogenic shock, stratified per survivorship. METHODS: A literature search was performed using three electronic databases from the date of their inception up to June 2018. The literature search and subsequent data extraction were performed by two independent reviewers. Digitized survival data were extracted from Kaplan-Meier curves in order to re-create the original patient data using an iterative algorithm and were subsequently aggregated for analysis. RESULTS: Fifty-two studies were included, with 44 undergoing quantitative analysis. A total of 17,515 patients were identified, with a mean age of 58.4±9.4 years and a mean duration of ECMO support of 5.1±2.6 days; 68.7% of the patients were male. Aggregated survival rates at 1, 2, 3 and 5 years were 36.7%, 34.8%, 33.8% and 29.9%, respectively. CONCLUSIONS: The present systematic review illustrates the expected survival results for VA-ECMO in the intermediate- to long-term. Extended follow-up and standardized reporting measures are urgently needed in order to carry out more definitive subgroup analyses.

13.
Antioxid Redox Signal ; 31(9): 664-670, 2019 09 20.
Article in English | MEDLINE | ID: mdl-30864831

ABSTRACT

Cellular antioxidant systems control the levels of hydrogen peroxide (H2O2) within cells. Multiple theoretical models exist that predict the diffusion properties of H2O2 depending on the rate of H2O2 generation and amount and reaction rates of antioxidant machinery components. Despite these theoretical predictions, it has remained unknown how antioxidant systems shape intracellular H2O2 gradients. The relative role of thioredoxin (Trx) and glutathione systems in H2O2 pattern formation and maintenance is another disputed question. Here, we visualized cellular antioxidant activity and H2O2 gradients formation by exploiting chemogenetic approaches to generate compartmentalized intracellular H2O2 and using the H2O2 biosensor HyPer to analyze the resulting H2O2 distribution in specific subcellular compartments. Using human HeLa cells as a model system, we propose that the Trx system, but not the glutathione system, regulates intracellular H2O2 gradients. Antioxid. Redox Signal. 31, 664-670.


Subject(s)
Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Oxidative Stress , Glutathione/metabolism , HeLa Cells , Humans , Intracellular Space/metabolism , Thioredoxins/metabolism
14.
Nat Commun ; 9(1): 4044, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279532

ABSTRACT

Oxidative stress plays an important role in the pathogenesis of many disease states. In the heart, reactive oxygen species are linked with cardiac ischemia/reperfusion injury, hypertrophy, and heart failure. While this correlation between ROS and cardiac pathology has been observed in multiple models of heart failure, the independent role of hydrogen peroxide (H2O2) in vitro and in vivo is unclear, owing to a lack of tools for precise manipulation of intracellular redox state. Here we apply a chemogenetic system based on a yeast D-amino acid oxidase to show that chronic generation of H2O2 in the heart induces a dilated cardiomyopathy with significant systolic dysfunction. We anticipate that chemogenetic approaches will enable future studies of in vivo H2O2 signaling not only in the heart, but also in the many other organ systems where the relationship between redox events and physiology remains unclear.


Subject(s)
Heart Failure/etiology , Hydrogen Peroxide/metabolism , Myocytes, Cardiac/metabolism , Animals , Heart Failure/metabolism , Male , Primary Cell Culture , Rats, Wistar , Recombinant Fusion Proteins , Transcription, Genetic
15.
Langmuir ; 34(34): 9950-9960, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30070855

ABSTRACT

We report the effect of "interactive" polymer network (PN) supports on the solvent-vapor processing of thin polymer films. Densely cross-linked surface-attached network exhibits under experimental time scale a glassy swelling behavior with the conformational states and solvent-uptake clearly sensitive to the degree of solvent vapor saturation in the atmosphere. Pretreatment of the thermally cured PN films by complete immersion or by swelling in saturated chloroform vapors facilitates relaxation of the residual stresses and induces irreversible changes to the network structure as revealed by the swelling/deswelling tests. The presence of a polymer film on top of the PN support results in a mutual influence of the layers on the respective swelling kinetics, steady-state solvent uptake, and chain dynamics. Using UV-vis ellipsometry, we revealed a significantly faster swelling and higher solvent uptake of glassy PN layer below a polymer film as compared to a single PN layer on silicon substrate. Remarkably, the swelling of the network support continues to increase even when the overall swelling of the bilayer is in a steady-state regime. Block copolymer films on PN supports exhibit a faster ordering dynamics and exceptional stability toward dewetting as compared to similar films on silicon wafers. The mechanical stress produced by continuously swelling PN is suggested to account for the enhanced segmental dynamics even at low solvent concentration in the block copolymer film. Apart from novel insights into dynamics of solvent uptake by heterogeneous polymer films, these results might be useful in developing novel approaches toward fast-processing/annealing of functional polymer films and fibers.

16.
J Phys Chem Lett ; 9(8): 1958-1963, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29589942

ABSTRACT

Novel fluorogenic dyes based on the GFP chromophore are developed. The compounds contain a pyridinium ring instead of phenolate and feature large Stokes shifts and solvent-dependent variations in the fluorescence quantum yield. Electronic structure calculations explain the trends in solvatochromic behavior in terms of the increase of the dipole moment upon excited-state relaxation in polar solvents associated with the changes in bonding pattern in the excited state. A unique combination of such optical characteristics and lipophilic properties enables using one of the new dyes for imaging the membrane structure of endoplasmic reticulum. An extremely high photostability (due to a dynamic exchange between the free and absorbed states) and selectivity make this compound a promising label for this type of cellular organelles.


Subject(s)
Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Pyridinium Compounds/chemistry , Animals , HeLa Cells , Humans , Mice , Molecular Structure , NIH 3T3 Cells , Quantum Theory , Solvents/chemistry
17.
Mutat Res ; 803-805: 35-41, 2017 10.
Article in English | MEDLINE | ID: mdl-28910671

ABSTRACT

Fundamental research on the harmful effects of ionizing radiation on living cells continues to be of great interest. Recently, priority has been given to the study of high-charge and high-energy (HZE) ions that comprise a substantial part of the galactic cosmic ray (GCR) spectra that would be encountered during long-term space flights. Moreover, predictions of the delayed genetic effects of high linear energy transfer (LET) exposure is becoming more important as heavy ion therapy use is increasing. This work focuses mainly on the basic research on the delayed effects of HZE ions on V79 Chinese hamster cells, with emphasis on the induction of HPRT mutations after prolonged expression times (ET). The research was conducted under various irradiation conditions with accelerated ions 18O (E=35.2MeV/n), 20Ne (E=47.7MeV/n and 51.8MeV/n), and 11B (E=32.4MeV/n), with LET in the range from 49 to 149 keV/µm and with 60Co γ-rays. The HPRT mutant fractions (MF) were detected in irradiated cells in regular intervals during every cell culture recultivation (every 3days) up to approximately 40days (70-80 generations) after irradiation. The MF maximum was reached at different ET depending on ionizing radiation characteristics. The position of the maximum was shifting towards longer ET with increasing LET. We speculate that the delayed mutations are created de novo and that they are the manifestation of genomic instability. Although the exact mechanisms involved in genomic instability initiation are yet to be identified, we hypothesize that differences in induction of delayed mutations by radiations with various LET values are related to variations in energy deposition along the particle track. A dose dependence of mutation yield is discussed as well.


Subject(s)
Gamma Rays , Heavy Ions/adverse effects , Hypoxanthine Phosphoribosyltransferase/genetics , Mutation , Animals , Cell Line , Cricetinae , Cricetulus , Dose-Response Relationship, Radiation , Fibroblasts/radiation effects , Genomic Instability/radiation effects , Linear Energy Transfer
18.
Curr Protoc Chem Biol ; 9(2): 117-127, 2017 Jun 19.
Article in English | MEDLINE | ID: mdl-28628200

ABSTRACT

Described here is a localized H2 O2 generation-detection system consisting of a yeast D-amino acid oxidase (DAAO) and two spectrally distinct variants of biosensor, HyPer2 and HyPerRed based on circularly permutated yellow and red fluorescent proteins, respectively, which enables spatiotemporal production and examination of the intracellular H2 O2 dynamics. The protocol describes using this system in a simple cell culture model. We provide detailed instructions on imaging of H2 O2 generated by the activated DAAO. The system can be easily optimized for various combinations of cell types, conditions and DAAO/sensor subcellular localizations. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Biosensing Techniques/methods , Hydrogen Peroxide/metabolism , Molecular Imaging/methods , Amino Acid Oxidoreductases/metabolism , Biocatalysis , Cell Survival , HEK293 Cells , HeLa Cells , Humans , Intracellular Space/metabolism , Rhodotorula/enzymology
19.
Nat Commun ; 8: 15362, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28530239

ABSTRACT

Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of neurons using thermosensitive transient receptor potential (TRP) cation channels. Broader application of this approach in neuroscience is, however, hindered by a limited variety of suitable ion channels, and by low spatial and temporal resolution of neuronal activation when TRP channels are activated by ambient temperature variations or chemical agonists. Here, we demonstrate rapid, robust and reproducible repeated activation of snake TRPA1 channels heterologously expressed in non-neuronal cells, mouse neurons and zebrafish neurons in vivo by infrared (IR) laser radiation. A fibre-optic probe that integrates a nitrogen-vacancy (NV) diamond quantum sensor with optical and microwave waveguide delivery enables thermometry with single-cell resolution, allowing neurons to be activated by exceptionally mild heating, thus preventing the damaging effects of excessive heat. The neuronal responses to the activation by IR laser radiation are fully characterized using Ca2+ imaging and electrophysiology, providing, for the first time, a complete framework for a thermogenetic manipulation of individual neurons using IR light.


Subject(s)
Calcium/metabolism , Neurons/metabolism , Thermogenesis , Transient Receptor Potential Channels/physiology , Action Potentials , Animals , Cells, Cultured , Electrophysiology/methods , HEK293 Cells , Hot Temperature , Humans , Ions , Lasers , Mice , Mice, Inbred C57BL , Microwaves , Snakes , Zebrafish
20.
J Phys Chem B ; 120(22): 5073-82, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27176778

ABSTRACT

Recently, photofluidization and mass-transfer effects have gained substantial interest because of their unique abilities of photocontrolled manipulation with material structure and physicochemical properties. In this work, the surface topographies of amorphous, nematic, and crystalline films of an azobenzene-containing bent-core (banana-shaped) compound were studied using a special experimental setup combining polarizing optical microscopy and atomic force microscopy. Spin-coating or rapid cooling of the samples enabled the formation of glassy amorphous or nematic films of the substance. The effects of UV and visible-light irradiation on the surface roughness of the films were investigated. It was found that UV irradiation leads to the fast isothermal transition of nematic and crystalline phases into the isotropic phase. This effect is associated with E-Z photoisomerization of the compound accompanied by a decrease of the anisometry of the bent-core molecules. Focused polarized visible-light irradiation (457.9 nm) results in mass-transfer phenomena and induces the formation of so-called "craters" in amorphous and crystalline films of the substance. The observed photofluidization and mass-transfer processes allow glass-forming bent-core azobenzene-containing substances to be considered for the creation of promising materials with photocontrollable surface topographies. Such compounds are of principal importance for the solution of a broad range of problems related to the investigation of surface phenomena in colloid and physical chemistry, such as surface modification for chemical and catalytic reactions, predetermined morphology of surfaces and interfaces in soft matter, and chemical and biochemical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...