Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11171, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750049

ABSTRACT

White-tailed deer (Odocoileus virginianus) have emerged as a reservoir host for SARS-CoV-2 given their susceptibility to infection and demonstrated high rates of seroprevalence and infection across the United States. As SARS-CoV-2 circulates within free-ranging white-tailed deer populations, there is the risk of transmission to other wildlife species and even back to the human population. The goal of this study was to determine the susceptibility, shedding, and immune response of North American elk (Cervus elaphus canadensis) to experimental infection with SARS-CoV-2, to determine if another wide-ranging cervid species could potentially serve as a reservoir host for the virus. Here we demonstrate that while North American elk do not develop clinical signs of disease, they do develop a neutralizing antibody response to infection, suggesting the virus is capable of replicating in this mammalian host. Additionally, we demonstrate SARS-CoV-2 RNA presence in the medial retropharyngeal lymph nodes of infected elk three weeks after experimental infection. Consistent with previous observations in humans, these data may highlight a mechanism of viral persistence for SARS-CoV-2 in elk.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Deer , RNA, Viral , SARS-CoV-2 , Animals , Deer/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , COVID-19/virology , RNA, Viral/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Virus Shedding , Disease Reservoirs/virology , Female
3.
Cytotechnology ; 76(2): 191-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495292

ABSTRACT

Given the implications of increased transmissibility, virulence, host range, and immune escapes of emerging variants of SARS-CoV-2, developing in vitro models that allow for detection of variants and differences in infection dynamics is important. The objective of this study, was to evaluate the PrimeFlow RNA in-situ assay as a method of detection for multiple strains of SARS-CoV-2. Evaluation of detection and infection statuses included single infections with an Alpha, Delta, or Omicron variants and dual infections with Alpha/Omicron or Delta/Omicron. RNA probes specific for the Spike protein coding region, were designed (omicron or non-omicron specific). SARS-CoV-2 RNA was detected in greater frequency in the Vero E6 and minimally in the fetal deer testicle cell lines by flow cytometry using this approach for viral detection of multiple variants. Most evident in the Vero E6 cells, 24 h post infection both Alpha and Delta predominated over Omicron in dual infections. This is the first report using the PrimeFlow assay for the detection of SARS-CoV-2 at the single-cell level and as a potential model for competition of variants utilizing infection dynamics in cell culture.

4.
Front Vet Sci ; 11: 1334858, 2024.
Article in English | MEDLINE | ID: mdl-38352039

ABSTRACT

Introduction: Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods: We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results: We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion: This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.

5.
Anim Genet ; 55(1): 47-54, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946616

ABSTRACT

Genetic selection for milk production traits in US Holsteins has affected numerous genes associated with reproduction and immunity. This study compares the transcriptomic response of peripheral blood mononuclear cells to an in vitro Brucella abortus strain RB51 (RB51) bacterial challenge between contemporary Holsteins and Holsteins that have not been selected for milk production traits since the mid-1960s. Total RNA was extracted from peripheral blood mononuclear cells from four contemporary and four unselected lactating, primiparous cows following 24-h incubation with or without stimulation with RB51 bacteria. RNA was sequenced and reads analyzed using tools from galaxy.scinet.usda.gov. A total of 412 differentially expressed genes (false discovery rate p < 0.05, log fold change > |1|) were identified. The upregulated genes (genes with higher expression in contemporary than unselected cattle) were enriched for 19 terms/pathways, including alanine, aspartate, and glutamate metabolism, indicating a cellular stress response. Downregulated genes (genes with higher expression in unselected than contemporary cows) were enriched for 37 terms/pathways, representing diverse immune responses, including natural killer cell-mediated immunity, interferon-γ production, negative regulation of interleukin-10 production, and cytokine receptor activity indicating a broad immune response with an emphasis on immune defense. These results provide evidence that differences exist between the two genotypes in response to in vitro bacterial challenge. This suggests that contemporary cows, genetically selected for milk production, may have reduced immune function, including limitations in response to intracellular bacteria.


Subject(s)
Brucella abortus , Leukocytes, Mononuclear , Female , Cattle/genetics , Animals , Brucella abortus/genetics , Lactation , Genotype , RNA , Immunity
6.
Front Genet ; 14: 1292671, 2023.
Article in English | MEDLINE | ID: mdl-38075681

ABSTRACT

Pseudorabies virus (PRV)-the causative agent of Aujeszky's disease-was eliminated from commercial pig production herds in the United States (US) in 2004; however, PRV remains endemic among invasive feral swine (Sus scrofa). The circulation of PRV among abundant, widespread feral swine populations poses a sustained risk for disease spillover to production herds. Risk-based surveillance has been successfully implemented for PRV in feral swine populations in the US. However, understanding the role of host genetics in infection status may offer new insights into the epidemiology and disease dynamics of PRV that can be applied to management strategies. Genetic mechanisms underlying host susceptibility to PRV are relatively unknown; therefore, we sought to identify genomic regions associated with PRV infection status among naturally infected feral swine using genome-wide association studies (GWAS) and gene set enrichment analysis of single nucleotide polymorphism data (GSEA-SNP). Paired serological and genotypic data were collected from 6,081 feral swine distributed across the invaded range within the contiguous US. Three complementary study populations were developed for GWAS: 1) comprehensive population consisting of feral swine throughout the invaded range within the contiguous US; 2) population of feral swine under high, but temporally variable PRV infection pressure; and 3) population of feral swine under temporally stable, high PRV infection pressure. We identified one intronic SNP associated with PRV infection status within candidate gene AKAP6 on autosome 7. Various gene sets linked to metabolic pathways were enriched in the GSEA-SNP. Ultimately, improving disease surveillance efforts in feral swine will be critical to further understanding of the role host genetics play in PRV infection status, helping secure the health of commercial pork production.

7.
J Immunol ; 211(8): 1173-1179, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37782851

ABSTRACT

Bovine tuberculosis (bTB) is a zoonotic bacterial disease presenting public health, veterinary, and economic threats around the globe. Although cattle producers rely on regular testing and management practices to minimize domestic herd exposure, wildlife species around the world continue to be the main reservoirs for disease. Wildlife reservoirs for bTB include the Eurasian badger (Meles meles) in Great Britain and Ireland, the brushtail possum (Trichosurus vulpecula) in New Zealand, wild boar (Sus scrofa) in Spain, as well as white-tailed deer (Odocoileus virginianus) in the United States and red deer (Cervus elaphus) in Spain. Although all reservoir species share the ability to infect cattle, they differ in transmission capability, disease pathogenesis, diagnostic detection, and vaccination strategies. In this review, bTB interactions with these wildlife reservoirs are discussed, illustrating the need to address bTB disease in wildlife hosts to achieve eradication in domestic livestock.


Subject(s)
Deer , Mycobacterium bovis , Tuberculosis, Bovine , Cattle , Animals , Animals, Wild , Deer/microbiology , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary
8.
Microorganisms ; 11(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37894146

ABSTRACT

In many parts of the world, bovine tuberculosis eradication efforts are hampered by wildlife reservoirs of Mycobacterium bovis, which serve as a constant source of M. bovis for nearby cattle. The human tuberculosis vaccine, M. bovis BCG has been investigated for use in several wildlife species, including deer. In the US, white-tailed deer in Michigan have been the source of infection for over 82 cattle herds since M. bovis was discovered in free-ranging deer in 1995. The efficacy of BCG may be influenced by many factors, including prior exposure or infection with non-tuberculous mycobacteria, that is, species other than members of the M. tuberculosis complex. M. avium subspecies paratuberculosis (Map) infection is not uncommon in ruminants such as deer. Using natural exposure to Map and experimental infection with M. bovis, we demonstrate that Map infection increased BCG vaccine efficacy as measured by lesion severity scores.

9.
Tuberculosis (Edinb) ; 142: 102377, 2023 09.
Article in English | MEDLINE | ID: mdl-37531864

ABSTRACT

The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.


Subject(s)
Coinfection , Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Tuberculosis, Bovine , Animals , Cattle , Humans , Nontuberculous Mycobacteria , Mycobacterium Infections, Nontuberculous/microbiology
10.
Front Vet Sci ; 10: 1105485, 2023.
Article in English | MEDLINE | ID: mdl-36876019

ABSTRACT

Brucella abortus is a gram negative, zoonotic pathogen that can cause abortions and stillbirths in the cattle industry and has contributed to significant economic losses to cow-calf producers. Cell mediated immunity (CMI) is an important component of the immune response associated with protection against Brucella abortus and other intracellular pathogens. Brucellosis and viral modified live vaccines (vMLV) are licensed individually but may be used concurrently under field conditions. Peripheral blood mononuclear cells (PBMC) from non-vaccinated cattle and cattle vaccinated with either Brucella abortus strain RB51, a vMLV or both RB51 and a vMLV vaccine were isolated. The frequency of CD4+, CD8+ and γδ+ T cell populations within PBMC, and the frequency of interferon gamma (IFN-γ) production within these cell types was characterized via flow-cytometry. The goal of this study was to characterize immune responses to RB51 vaccination and determine the effect of concurrent vaccine administration. Although immune responses were greatest in PBMC from cattle vaccinated with only RB51, cattle vaccinated with both RB51 and vMLV demonstrated measurable T cell responses associated with protective immunity. Data suggests a lack of significant biological differences between the groups in protective immune responses. Collectively, our data demonstrated a lack of vaccine interference following concurrent administration of vMLV and RB51. Although concurrent administration of individually licensed vaccines may influence immune responses and contribute to vaccine interference, potential vaccine combinations should be evaluated for biological effects.

11.
Viruses ; 15(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36992412

ABSTRACT

Bovine viral vaccines contain both live or inactivated/killed formulations, but few studies have evaluated the impact of vaccinating with either live or killed antigens and re-vaccinating with the reciprocal. Commercial dairy heifers were utilized for the study and randomly assigned to three treatment groups. Treatment groups received a commercially available modified-live viral (MLV) vaccine containing BVDV and were revaccinated with a commercially available killed viral (KV) vaccine containing BVDV, another group received the same KV vaccine and was revaccinated with the same MLV vaccine, and yet another group served as negative controls and did not receive any viral vaccines. Heifers in KV/MLV had higher virus neutralizing titers (VNT) at the end of the vaccination period than heifers in MLV/KV and control groups. The frequency of IFN-γ mRNA positive CD4+, CD8+, and CD335+ populations, as well as increased mean fluorescent intensity of CD25+ cells was increased for the MLV/KV heifers as compared to KV/MLV and controls. The data from this study would suggest that differences in initial antigen presentation such as live versus killed could augment CMI and humoral responses and could be useful in determining vaccination programs for optimizing protective responses, which is critical for promoting lifetime immunity.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Viral Vaccines , Female , Animals , Cattle , Vaccines, Inactivated , Antibodies, Viral , Diarrhea
12.
J Vet Diagn Invest ; 35(2): 193-195, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36476245

ABSTRACT

Hamartomas are benign tumor-like lesions composed of disorganized growth of mature mesenchymal or epithelial tissues indigenous to the organ involved. Sporadically observed in ruminants, vascular, fibrous, nasal, and pulmonary hamartomas have been reported in calves; pulmonary and cutaneous forms have been reported in sheep. A full-term elk calf found dead had a large intrathoracic mass replacing the left caudal lung lobe and compressing other thoracic organs. Histologically, cross- and tangential sections of bronchi were separated by collagenous mesenchyme and irregularly shaped canaliculi and saccules resembling terminal bronchioles. Rarely present were regions in which saccules, lined by simple cuboidal epithelium, transitioned into attenuated epithelium lining fully developed alveoli. These findings are consistent with a pulmonary hamartoma. To our knowledge, pulmonary hamartoma has not been reported previously in a non-domestic ruminant.


Subject(s)
Deer , Hamartoma , Lung Neoplasms , Animals , Epithelium , Hamartoma/diagnosis , Hamartoma/pathology , Hamartoma/veterinary , Lung Neoplasms/veterinary , Nose , Pulmonary Alveoli , Sheep , Sheep Diseases , Animals, Wild , Fatal Outcome
13.
PLoS Pathog ; 18(3): e1010197, 2022 03.
Article in English | MEDLINE | ID: mdl-35312736

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30-40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3-4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.


Subject(s)
COVID-19 , Deer , Animals , COVID-19/veterinary , SARS-CoV-2 , Tropism
14.
Pathogens ; 11(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35056009

ABSTRACT

The bovine tuberculoid granuloma is the hallmark lesion of bovine tuberculosis (bTB) due to Mycobacterium bovis infection. The pathogenesis of bTB, and thereby the process of bovine tuberculoid granuloma development, involves the recruitment, activation, and maintenance of cells under the influence of antigen, cytokines and chemokines in affected lungs and regional lymph nodes. The granuloma is key to successful control of bTB by preventing pathogen dissemination through containment by cellular and fibrotic layers. Paradoxically, however, it may also provide a niche for bacterial replication. The morphologic and cellular characteristics of granulomas have been used to gauge disease severity in bTB pathogenesis and vaccine efficacy studies. As such, it is critical to understand the complex mechanisms behind granuloma initiation, development, and maintenance.

15.
Front Vet Sci ; 8: 706160, 2021.
Article in English | MEDLINE | ID: mdl-34395578

ABSTRACT

Bison (Bison bison) heifer calves (n = 32) were randomly assigned to control or vaccination with 1010 colony-forming units of Brucella abortus strain RB51 (RB51) vaccine by single or boostered parenteral delivery, or by surgical implantation of a dry dart formulation (n = 8/trt). Serum and/or peripheral blood mononuclear cells (PBMC) were obtained at 0, 4, 8, 13, 16, 21, and 24 wks after initial vaccination and at 0, 4, 8, 12, 15, 22, and 27 wks after booster vaccination to characterize humoral and cellular immune responses to RB51. Bison in both RB51 vaccination treatments demonstrated greater (P < 0.0001) serum humoral responses when compared to non-vaccinates, with parenteral vaccinates demonstrating greater (P < 0.01) responses when compared to mean responses of bison inoculated with the dry dart. Only the booster vaccinated treatment demonstrated greater (P < 0.0001) humoral responses than control bison in samples collected after re-inoculation. At 4, 8, 12, 16, and 24 wks after initial vaccination, PBMC from parenteral RB51 vaccinates demonstrated greater proliferative responses to RB51 when compared to responses of control animals. In comparison, bison inoculated with the RB51 dry dart did not demonstrate greater (P > 0.05) proliferative responses when compared to responses of non-vaccinates. Bison were pasture bred and pregnant animals experimentally challenged in mid-gestation with 107 CFU of B. abortus strain 2,308. Bison in parenteral vaccination treatments had reduced (P < 0.05) abortions and infection in uterine and fetal samples as compared to non-vaccinated bison, with booster vaccinates tending to have the lowest colonization (CFU/gm) in tissues. In comparison, the dry dart formulation did reduce abortion (P < 0.05) but not infection (P > 0.05) in most tissues when compared to non-vaccinated bison. The results of this study reaffirm the efficacy of boostered parenteral vaccination of bison with RB51 in preventing brucellosis. Our data also suggests that the novel dry dart RB51 formulation does not induce sufficient efficacy in bison after a single inoculation.

16.
Front Vet Sci ; 8: 676710, 2021.
Article in English | MEDLINE | ID: mdl-34336973

ABSTRACT

Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to be a major economic burden associated with production losses and a public health concern due to its zoonotic nature. As with other intracellular pathogens, cell-mediated immunity plays an important role in the control of infection. Characterization of such responses is important for understanding the immune status of the host, and to identify mechanisms of protective immunity or immunopathology. This type of information can be important in the development of vaccination strategies, diagnostic assays, and in predicting protection or disease progression. However, the frequency of circulating M. bovis-specific T cells are often low, making the analysis of such responses difficult. As previously demonstrated in a different cattle infection model, antigenic expansion allows us to increase the frequency of antigen-specific T cells. Moreover, the concurrent assessment of cytokine production and proliferation provides a deeper understanding of the functional nature of these cells. The work presented here, analyzes the T cell response following experimental M. bovis infection in cattle via in vitro antigenic expansion and re-stimulation to characterize antigen-specific CD4, CD8, and γδ T cells and their functional phenotype, shedding light on the variable functional ability of these cells. Data gathered from these studies can help us better understand the cellular response to M. bovis infection and develop improved vaccines and diagnostic tools.

17.
Front Vet Sci ; 8: 671460, 2021.
Article in English | MEDLINE | ID: mdl-34026898

ABSTRACT

Mycobacterium bovis is the cause of tuberculosis in most animals, most notably cattle. The stereotypical lesion of bovine tuberculosis is the granuloma; a distinct morphological lesion where host and pathogen interact and disease outcome (i.e., dissemination, confinement, or resolution) is determined. Accordingly, it is critical to understand host-pathogen interactions at the granuloma level. Host-pathogen interactions within individual granulomas at different stages of disease have not been examined in cattle. We examined bacterial burden and cytokine expression in individual pulmonary granulomas from steers at 30, 90, 180, and 270 days after experimental aerosol infection with M. bovis. Bacterial burdens within individual granulomas examined 30 days after infection were greater and more heterogenous (variable) than those examined 90 to 270 days after infection. Bacterial burdens did not correlate with expression of IFN-γ, TNF-α, TGF-ß, granuloma stage, or lung lesion score, although there was a modest positive correlation with IL-10 expression. Granuloma stage did have modest positive and negative correlations with TNF-α and IL-10, respectively. Heterogeneity and mean expression of IFN-γ, IL-10 and TNF-α did not differ significantly over time, however, expression of TGF-ß at 90 days was significantly greater than that seen at 30 days after infection.

18.
Sci Rep ; 11(1): 9769, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33963240

ABSTRACT

Shiga-toxin producing Escherichia coli O157:H7 (O157)-based vaccines can provide a potential intervention strategy to limit foodborne zoonotic transmission of O157. While the peripheral antibody response to O157 vaccination has been characterized, O157-specific cellular immunity at the rectoanal junction (RAJ), a preferred site for O157 colonization, remains poorly described. Vaccine induced mucosal O157-specific antibodies likely provide some protection, cellular immune responses at the RAJ may also play a role in protection. Distinct lymphoid follicles were increased in the RAJ of vaccinated/challenged animals. Additionally, increased numbers of interferon (IFN)γ-producing cells and γδ + T cells were detected in the follicular region of the RAJ of vaccinated/challenged animals. Likewise, adjuvanted-vaccine formulation is critical in immunogenicity of the O157 parenteral vaccine. Local T cell produced IFNγ may impact epithelial cells, subsequently limiting O157 adherence, which was demonstrated using in vitro attachment assays with bovine epithelial cells. Thus, distinct immune changes induced at the mucosa of vaccinated and challenged animals provide insight of mechanisms associated with limiting O157 fecal shedding. Enhancing mucosal immunity may be critical in the further development of efficacious vaccines for controlling O157 in ruminants and thus limiting O157 transmission to humans.


Subject(s)
Bacterial Vaccines/pharmacology , Escherichia coli Infections , Escherichia coli O157/immunology , Immunity, Mucosal/drug effects , Interferon-gamma/immunology , Animals , Antibodies, Bacterial/immunology , Bacterial Vaccines/immunology , Cattle , Escherichia coli Infections/immunology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Humans , Male , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology
19.
PLoS One ; 16(4): e0249899, 2021.
Article in English | MEDLINE | ID: mdl-33909645

ABSTRACT

Rocky Mountain elk (Cervus canadensis) populations have significant economic implications to the cattle industry, as they are a major reservoir for Brucella abortus in the Greater Yellowstone area. Vaccination attempts against intracellular bacterial diseases in elk populations have not been successful due to a negligible adaptive cellular immune response. A lack of genomic resources has impeded attempts to better understand why vaccination does not induce protective immunity. To overcome this limitation, PacBio, Illumina, and Hi-C sequencing with a total of 686-fold coverage was used to assemble the elk genome into 35 pseudomolecules. A robust gene annotation was generated resulting in 18,013 gene models and 33,422 mRNAs. The accuracy of the assembly was assessed using synteny to the red deer and cattle genomes identifying several chromosomal rearrangements, fusions and fissions. Because this genome assembly and annotation provide a foundation for genome-enabled exploration of Cervus species, we demonstrate its utility by exploring the conservation of immune system-related genes. We conclude by comparing cattle immune system-related genes to the elk genome, revealing eight putative gene losses in elk.


Subject(s)
Deer/genetics , Genome , Animals , Cattle , Gene Fusion , Gene Rearrangement , Immunity/genetics , Pseudogenes/genetics , RNA, Messenger/metabolism
20.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33688053

ABSTRACT

Cattle are natural hosts of the intracellular pathogen Brucella abortus, which inflicts a significant burden on the health and reproduction of these important livestock. The primary routes of infection in field settings have been described, but it is not known how the bovine host shapes the structure of B. abortus populations during infection. We utilized a library of uniquely barcoded B. abortus strains to temporally and spatially quantify population structure during colonization of cattle through a natural route of infection. Introducing 108 bacteria from this barcoded library to the conjunctival mucosa resulted in expected levels of local lymph node colonization at a 1-wk time point. We leveraged variance in strain abundance in the library to demonstrate that only 1 in 10,000 brucellae introduced at the site of infection reached a parotid lymph node. Thus, cattle restrict the overwhelming majority of B. abortus introduced via the ocular conjunctiva at this dose. Individual strains were spatially restricted within the host tissue, and the total B. abortus census was dominated by a small number of distinct strains in each lymph node. These results define a bottleneck that B. abortus must traverse to colonize local lymph nodes from the conjunctival mucosa. The data further support a model in which a small number of spatially isolated granulomas founded by unique strains are present at 1 wk postinfection. These experiments demonstrate the power of barcoded transposon tools to quantify infection bottlenecks and to define pathogen population structure in host tissues.


Subject(s)
Brucella abortus/physiology , Brucellosis/veterinary , Cattle Diseases/microbiology , Animals , Brucella abortus/genetics , Brucella abortus/growth & development , Brucella abortus/pathogenicity , Brucellosis/microbiology , Cattle , Female , Lymph Nodes/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...