Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1195718, 2023.
Article in English | MEDLINE | ID: mdl-37674738

ABSTRACT

Plant pathogens and pests can cause significant losses in crop yields, affecting food security and the global economy. Many traditional chemical pesticides are used to combat these organisms. This can lead to the development of pesticide-resistant strains of pathogens/insects and negatively impact the environment. The development of new bioprotectants, which are less harmful to the environment and less likely to lead to pesticide-resistance, appears as a sustainable strategy to increase plant immunity. Natural Rhamnolipids (RL-Nat) are a class of biosurfactants with bioprotectant properties that are produced by an opportunistic human pathogen bacterium. RL-Nat can act as plant resistance inducers against a wide variety of pathogens. Recently, a series of bioinspired synthetic mono-RLs produced by green chemistry were also reported as phytoprotectants. Here, we explored their capacity to generate novel colloidal systems that might be used to encapsulate bioactive hydrophobic compounds to enhance their performance as plant bioprotectants. The synthetic mono-RLs showed good surfactant properties and emulsification power providing stable nanoemulsions capable of acting as bio-carriers with good wettability. Synthetic RLs-stabilized nanoemulsions were more effective than RLs suspensions at inducing plant immunity, without causing deleterious effects. These nanoemulsions were innocuous to native substrate microbiota and beneficial soil-borne microbes, making them promising safe bio-carriers for crop protection.

2.
Plant Physiol ; 182(3): 1310-1325, 2020 03.
Article in English | MEDLINE | ID: mdl-31862838

ABSTRACT

Allantoin is a purine oxidative product involved in long distance transport of organic nitrogen in nodulating legumes and was recently shown to play a role in stress tolerance in other plants. The subcellular localization of enzymes that catalyze allantoin synthesis and degradation indicates that allantoin is produced in peroxisomes and degraded in the endoplasmic reticulum (ER). Although it has been determined that allantoin is mostly synthesized in roots and transported to shoots either for organic nitrogen translocation in legumes or for plant protection during stress in Arabidopsis (Arabidopsis thaliana), the mechanism and molecular components of allantoin export from root cells are still unknown. AtUPS5 (Arabidopsis UREIDE PERMEASE 5) is a transmembrane protein that transports allantoin with high affinity when expressed in yeast. The subcellular fate of splicing variants AtUPS5L (long) and AtUPS5S (short) was studied by tagging them with fluorescent proteins in their cytosolic loops. The capability of these fusion proteins to complement the function of the native proteins was demonstrated by nutritional and salt stress experiments. Both variants localized to the ER, but the AtUPS5L variant was also detected in the trans-Golgi network/early endosome and at the plasma membrane. AtUPS5L and AtUPS5S localization indicates that they could have different roles in allantoin distribution between subcellular compartments. Our data suggest that under nonstress conditions UPS5L and UPS5S may function in allantoin degradation for nutrient recycling, whereas under stress, both genes may be involved in vesicular export allowing allantoin translocation from roots to shoots.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/metabolism , Allantoin/metabolism , Gene Expression Regulation, Plant , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL