Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 934: 173220, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761521

ABSTRACT

The number of gray seals (Halichoerus grypus) observed along the United States Northwest Atlantic region has been increasing for decades. These colonial animals often haul-out on beaches seasonally in numbers ranging from a few individuals to several thousands. While these larger aggregations are an important part of gray seal behavior, there is public concern that haul-outs could lead to large amounts of fecal waste in recreational areas, potentially resulting in beach closures. Yet, data to confirm whether these animals contribute to beach closures is lacking and minimal information is available on the occurrence of key water quality monitoring genetic markers in gray seal scat. This study evaluates the concentration of E. coli (EC23S857), enterococci (Entero1a), and fecal Bacteroidetes (GenBac3) as well as six fecal source identification genetic markers (HF183/BacR287, HumM2, CPQ_056, Rum2Bac, DG3, and GFD) measured by qPCR in 48 wild gray seal scat samples collected from two haul-out areas in Cape Cod (Massachusetts, U.S.A.). Findings indicate that FIB genetic markers are shed in gray seal scat at significantly different concentrations with the Entero1a genetic marker exhibiting the lowest average concentration (-0.73 log10 estimated mean copies per nanogram of DNA). In addition, systematic testing of scat samples demonstrated that qPCR assays targeting host-associated genetic markers indicative of human, ruminant, and canine fecal pollution sources remain highly specific in waters frequented by gray seals (>97 % specificity).

2.
Proc Biol Sci ; 288(1962): 20211841, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34753354

ABSTRACT

Phocine distemper virus (PDV) is a morbillivirus that circulates within pinnipeds in the North Atlantic. PDV has caused two known unusual mortality events (UMEs) in western Europe (1988, 2002), and two UMEs in the northwest Atlantic (2006, 2018). Infrequent cross-species transmission and waning immunity are believed to contribute to periodic outbreaks with high mortality in western Europe. The viral ecology of PDV in the northwest Atlantic is less well defined and outbreaks have exhibited lower mortality than those in western Europe. This study sought to understand the molecular and ecological processes underlying PDV infection in eastern North America. We provide phylogenetic evidence that PDV was introduced into northwest Atlantic pinnipeds by a single lineage and is now endemic in local populations. Serological and viral screening of pinniped surveillance samples from 2006 onward suggest there is continued circulation of PDV outside of UMEs among multiple species with and without clinical signs. We report six full genome sequences and nine partial sequences derived from harbour and grey seals in the northwest Atlantic from 2011 through 2018, including a possible regional variant. Work presented here provides a framework towards greater understanding of how recovering populations and shifting species may impact disease transmission.


Subject(s)
Caniformia , Distemper , Morbillivirus , Seals, Earless , Animals , Distemper/epidemiology , Distemper Virus, Phocine/genetics , Morbillivirus/genetics , Phylogeny
3.
PLoS One ; 16(1): e0243570, 2021.
Article in English | MEDLINE | ID: mdl-33406141

ABSTRACT

Despite a long-documented history of severe harmful algal blooms (HABs) in New England coastal waters, corresponding HAB-associated marine mammal mortality events in this region are far less frequent or severe relative to other regions where HABs are common. This long-term survey of the HAB toxins saxitoxin (STX) and domoic acid (DA) demonstrates significant and widespread exposure of these toxins in New England marine mammals, across multiple geographic, temporal and taxonomic groups. Overall, 19% of the 458 animals tested positive for one or more toxins, with 15% and 7% testing positive for STX and DA, respectively. 74% of the 23 different species analyzed demonstrated evidence of toxin exposure. STX was most prevalent in Maine coastal waters, most frequently detected in common dolphins (Delphinus delphis), and most often detected during July and October. DA was most prevalent in animals sampled in offshore locations and in bycaught animals, and most frequently detected in mysticetes, with humpback whales (Megaptera novaeangliae) testing positive at the highest rates. Feces and urine appeared to be the sample matrices most useful for determining the presence of toxins in an exposed animal, with feces samples having the highest concentrations of STX or DA. No relationship was found between the bloom season of toxin-producing phytoplankton and toxin detection rates, however STX was more likely to be present in July and October. No relationship between marine mammal dietary preference and frequency of toxin detection was observed. These findings are an important part of a framework for assessing future marine mammal morbidity and mortality events, as well as monitoring ecosystem health using marine mammals as sentinel organisms for predicting coastal ocean changes.


Subject(s)
Ecosystem , Environmental Exposure/analysis , Harmful Algal Bloom , Mammals/metabolism , Animals , Feces/chemistry , Geography , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , New England , Saxitoxin/analysis , Time Factors
4.
R Soc Open Sci ; 7(5): 192046, 2020 May.
Article in English | MEDLINE | ID: mdl-32537203

ABSTRACT

Skin-associated microorganisms have been shown to play a role in immune function and disease of humans, but are understudied in marine mammals, a diverse animal group that serve as sentinels of ocean health. We examined the microbiota associated with 75 epidermal samples opportunistically collected from nine species within four marine mammal families, including: Balaenopteridae (sei and fin whales), Phocidae (harbour seal), Physeteridae (sperm whales) and Delphinidae (bottlenose dolphins, pantropical spotted dolphins, rough-toothed dolphins, short-finned pilot whales and melon-headed whales). The skin was sampled from free-ranging animals in Hawai'i (Pacific Ocean) and off the east coast of the United States (Atlantic Ocean), and the composition of the bacterial community was examined using the sequencing of partial small subunit (SSU) ribosomal RNA genes. Skin microbiotas were significantly different among host species and taxonomic families, and microbial community distance was positively correlated with mitochondrial-based host genetic divergence. The oceanic location could play a role in skin microbiota variation, but skin from species sampled in both locations is necessary to determine this influence. These data suggest that a phylosymbiotic relationship may exist between microbiota and their marine mammal hosts, potentially providing specific health and immune-related functions that contribute to the success of these animals in diverse ocean ecosystems.

5.
J Zoo Wildl Med ; 51(1): 228-231, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32212568

ABSTRACT

Baseline health parameters are limited in the primary literature for gray seals (Halichoerus grypus) in the northwest Atlantic. Accurate normal physiologic reference ranges for both species and specific geographic populations are vital tools for assessing the health of individuals and understanding the health of the entire population. This study developed comprehensive reference intervals for biochemical and hematologic parameters of recently weaned gray seal pups on Cape Cod, Massachusetts from samples collected in 2013, 2016, and 2017. Reference ranges were developed using methodology outlined by the American Society of Clinical Veterinary Pathology. By establishing more comprehensive biochemical and hematologic reference ranges for this population based on a robust sample size, this study provides a new tool for clinicians, researchers, and rehabilitation organizations to improve individual patient care and population research.


Subject(s)
Blood Chemical Analysis/veterinary , Hematologic Tests/veterinary , Seals, Earless/blood , Animals , Animals, Wild/blood , Female , Male , Massachusetts , Reference Values , Weaning
6.
Dis Aquat Organ ; 127(2): 83-95, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29384478

ABSTRACT

The challenge of identifying cause of death in discarded bycaught marine mammals stems from a combination of the non-specific nature of the lesions of drowning, the complex physiologic adaptations unique to breath-holding marine mammals, lack of case histories, and the diverse nature of fishing gear. While no pathognomonic lesions are recognized, signs of acute external entanglement, bulging or reddened eyes, recently ingested gastric contents, pulmonary changes, and decompression-associated gas bubbles have been identified in the condition of peracute underwater entrapment (PUE) syndrome in previous studies of marine mammals. We reviewed the gross necropsy and histopathology reports of 36 cetaceans and pinnipeds including 20 directly observed bycaught and 16 live stranded animals that were euthanized between 2005 and 2011 for lesions consistent with PUE. We identified 5 criteria which present at significantly higher rates in bycaught marine mammals: external signs of acute entanglement, red or bulging eyes, recently ingested gastric contents, multi-organ congestion, and disseminated gas bubbles detected grossly during the necropsy and histologically. In contrast, froth in the trachea or primary bronchi, and lung changes (i.e. wet, heavy, froth, edema, congestion, and hemorrhage) were poor indicators of PUE. This is the first study that provides insight into the different published parameters for PUE in bycatch. For regions frequently confronted by stranded marine mammals with non-specific lesions, this could potentially aid in the investigation and quantification of marine fisheries interactions.


Subject(s)
Caniformia , Cetacea , Animals , Cause of Death , Conservation of Natural Resources , Drowning/pathology , Drowning/veterinary , Female , Fisheries , Male
7.
Bioscience ; 67(8): 760-768, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29599542

ABSTRACT

As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.

8.
Harmful Algae ; 51: 89-96, 2016 Jan.
Article in English | MEDLINE | ID: mdl-28003064

ABSTRACT

Several marine mammal epizootics have been closely linked to infectious diseases, as well as to the biotoxins produced by harmful algal blooms (HABs). In two of three saxitoxin (STX) associated mortality events, dolphin morbillivirus (DMV) or phocine distemper virus (PDV) was isolated in affected individuals. While STX is notorious for its neurotoxicity, immunotoxic effects have also been described. This study investigated the role of STX in altering immune function, specifically T lymphocyte proliferation, in harbor seals (Phoca vitulina concolor) upon in-vitro exposure. In addition, the study also examined whether exposure to STX could alter the susceptibility of harbor seal immune cells to PDV infection upon in-vitro exposure. STX caused an increase in harbor seal lymphocyte proliferation at 10ppb and exposure to STX significantly increased the amount of virus present in lymphocytes. These results suggest that low levels of STX within the range of those reported in northeast U.S. seals may affect the likelihood of systemic PDV infection upon in-vivo exposure in susceptible seals. Given the concurrent increase in morbillivirus epizootics and HAB events in the last 25 years, the relationship between low level toxin exposure and host susceptibility to morbillivirus needs to be further explored.

9.
Emerg Microbes Infect ; 5(8): e81, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27485496

ABSTRACT

Influenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists outside of UMEs, we undertook a multiyear investigation of IAV in healthy, live-captured Northwest Atlantic gray seals (Halichoerus grypus). From 2013 to 2015, we sampled 345 pups and 57 adults from Cape Cod, MA, USA and Nova Scotia, Canada consistently detecting IAV infection across all groups. There was an overall viral prevalence of 9.0% (95% confidence interval (CI): 6.4%-12.5%) in weaned pups and 5.3% (CI: 1.2%-14.6%) in adults, with seroprevalences of 19.3% (CI: 15.0%-24.5%) and 50% (CI: 33.7%-66.4%), respectively. Positive sera showed a broad reactivity to diverse influenza subtypes. IAV status did not correlate with measures of animal health nor impact animal movement or foraging. This study demonstrated that Northwest Atlantic gray seals are both permissive to and tolerant of diverse IAV, possibly representing an endemically infected wild reservoir population.


Subject(s)
Animals, Wild/virology , Disease Reservoirs , Influenza A virus/genetics , Influenza, Human/epidemiology , Orthomyxoviridae Infections/veterinary , Seals, Earless/virology , Animals , Antibodies, Viral/blood , Canada/epidemiology , Epidemiological Monitoring , Humans , Influenza A virus/immunology , Influenza A virus/isolation & purification , Influenza, Human/immunology , Influenza, Human/transmission , Influenza, Human/virology , Nova Scotia/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Polymerase Chain Reaction , Prevalence , RNA, Viral/blood , Telemetry , United States/epidemiology
10.
Arch Environ Contam Toxicol ; 70(1): 121-32, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26142119

ABSTRACT

In the last 30 years, several large-scale marine mammal mortality events have occurred, often in close association with highly polluted regions, leading to suspicions that contaminant-induced immunosuppression contributed to these epizootics. Some of these recent events also identified morbillivirus as a cause of or contributor to death. The role of contaminant exposures regarding morbillivirus mortality is still unclear. The results of this study aimed to address the potential for a mixture of polychlorinated biphenyls (PCBs), specifically Aroclor 1260, to alter harbor seal T-lymphocyte proliferation and to assess if exposure resulted in increased likelihood of phocine distemper virus (PDV USA 2006) to infect susceptible seals in an in vitro system. Exposure of peripheral blood mononuclear cells to Aroclor 1260 did not significantly alter lymphocyte proliferation (1, 5, 10, and 20 ppm). However, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), lymphocytes exposed to 20 ppm Aroclor 1260 exhibited a significant decrease in PDV replication at day 7 and a significant increase at day 11 compared with unexposed control cells. Similar and significant differences were apparent on exposure to Aroclor 1260 in monocytes and supernatant. The results here indicate that in harbor seals, Aroclor 1260 exposure results in a decrease in virus early during infection and an increase during late infection. The consequences of this contaminant-induced infection pattern in a highly susceptible host could result in a greater potential for systemic infection with greater viral load, which could explain the correlative findings seen in wild populations exposed to a range of persistent contaminants that suffer from morbillivirus epizootics.


Subject(s)
Aroclors/toxicity , Distemper Virus, Phocine/physiology , Virus Replication/drug effects , Water Pollutants, Chemical/toxicity , Animals , Distemper Virus, Phocine/drug effects , In Vitro Techniques , Leukocytes, Mononuclear , Phoca
11.
J Wildl Dis ; 51(2): 454-65, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25647591

ABSTRACT

Worldwide, stranded marine mammals and the network personnel who respond to marine mammal mortality have provided much of the information regarding marine morbillivirus infections. An assay to determine the amount of virus present in tissue samples would be useful to assist in routine surveying of animal health and for monitoring large-scale die-off events. False negatives from poor-quality samples prevent determination of the true extent of infection, while only small amounts of tissue samples or archived RNA may be available at the time of collection for future retrospective analysis. We developed a one-step duplex real-time reverse transcriptase-quantitative-PCR assay (RT-qPCR) based on Taqman probe technology to quantify phocine distemper virus (PDV) isolated from an outbreak in harbor (Phoca vitulina concolor) and gray seals (Halichoerus grypus) along the northeast US coast in 2006. The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was selected to assess RNA quality. This duplex assay is specific for PDV and sensitive through a range of 10(0) to 10(9) copies ds-plasmid DNA. For the GAPDH target, the reaction in duplex amplified 10(0) to 10(9) copies of ds-plasmid DNA and was detectable in multiple seal species. This assay reduced the likelihood of false negative results due to degradation of tissues and well-to-well variability while providing sensitive and specific detection of PDV, which would be applicable in molecular epidemiologic studies and pathogen detection in field and laboratory investigations involving a variety of seal species.


Subject(s)
Distemper Virus, Phocine/isolation & purification , Distemper/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Seals, Earless , Amino Acid Sequence , Animals , Base Sequence , DNA, Viral/genetics , Distemper/diagnosis , Molecular Sequence Data , RNA, Viral , Viral Proteins/genetics , Viral Proteins/metabolism
12.
PLoS One ; 8(12): e83994, 2013.
Article in English | MEDLINE | ID: mdl-24367623

ABSTRACT

Gas bubbles in marine mammals entangled and drowned in gillnets have been previously described by computed tomography, gross examination and histopathology. The absence of bacteria or autolytic changes in the tissues of those animals suggested that the gas was produced peri- or post-mortem by a fast decompression, probably by quickly hauling animals entangled in the net at depth to the surface. Gas composition analysis and gas scoring are two new diagnostic tools available to distinguish gas embolisms from putrefaction gases. With this goal, these methods have been successfully applied to pathological studies of marine mammals. In this study, we characterized the flux and composition of the gas bubbles from bycaught marine mammals in anchored sink gillnets and bottom otter trawls. We compared these data with marine mammals stranded on Cape Cod, MA, USA. Fresh animals or with moderate decomposition (decomposition scores of 2 and 3) were prioritized. Results showed that bycaught animals presented with significantly higher gas scores than stranded animals. Gas composition analyses indicate that gas was formed by decompression, confirming the decompression hypothesis.


Subject(s)
Caniformia/metabolism , Decompression , Dolphins/metabolism , Gases/chemistry , Gases/metabolism , Animals , Postmortem Changes
13.
Dis Aquat Organ ; 88(2): 143-55, 2010 Jan 25.
Article in English | MEDLINE | ID: mdl-20225675

ABSTRACT

To understand the cause of death of 405 marine mammals stranded on Cape Cod and southeastern Massachusetts between 2000 and 2006, a system for coding final diagnosis was developed and categorized as (1) disease, (2) human interaction, (3) mass-stranded with no significant findings, (4) single-stranded with no significant findings, (5) rock and/or sand ingestion, (6) predatory attack, (7) failure to thrive or dependent calf or pup, or (8) other. The cause of death for 91 animals could not be determined. For the 314 animals that could be assigned a cause of death, gross and histological pathology results and ancillary testing indicated that disease was the leading cause of mortality in the region, affecting 116/314 (37%) of cases. Human interaction, including harassment, entanglement, and vessel collision, fatally affected 31/314 (10%) of all animals. Human interaction accounted for 13/29 (45%) of all determined gray seal Halichoerus grypus mortalities. Mass strandings were most likely to occur in northeastern Cape Cod Bay; 97/106 (92%) of mass stranded animals necropsied presented with no significant pathological findings. Mass strandings were the leading cause of death in 3 of the 4 small cetacean species: 46/67 (69%) of Atlantic white-sided dolphin Lagenorhynchus acutus, 15/21 (71%) of long-finned pilot whale Globicephala melas, and 33/54 (61%) of short-beaked common dolphin Delphinus delphis. These baseline data are critical for understanding marine mammal population health and mortality trends, which in turn have significant conservation and management implications. They not only afford a better retrospective analysis of strandings, but ultimately have application for improving current and future response to live animal stranding.


Subject(s)
Bacterial Infections/veterinary , Caniformia , Central Nervous System Diseases/veterinary , Dolphins , Parasitic Diseases, Animal/mortality , Whales , Animals , Bacterial Infections/mortality , Central Nervous System Diseases/mortality , Environmental Monitoring , Human Activities , Humans , Massachusetts , Time Factors
14.
FEMS Microbiol Ecol ; 67(3): 421-31, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19187217

ABSTRACT

The prevalence of antibiotic-resistant bacteria in the marine environment is a growing concern, but the degree to which marine mammals, seabirds and fish harbor these organisms is not well documented. This project sought to identify the occurrence and patterns of antibiotic resistance in bacteria isolated from vertebrates of coastal waters in the northeastern United States. Four hundred and seventy-two isolates of clinical interest were tested for resistance to a suite of 16 antibiotics. Fifty-eight percent were resistant to at least one antibiotic, while 43% were resistant to multiple antibiotics. A multiple antibiotic resistance index value >or=0.2 was observed in 38% of the resistant pathogens, suggesting exposure of the animals to bacteria from significantly contaminated sites. Groups of antibiotics were identified for which bacterial resistance commonly co-occurred. Antibiotic resistance was more widespread in bacteria isolated from seabirds than marine mammals, and was more widespread in stranded or bycaught marine mammals than live marine mammals. Structuring of resistance patterns based on sample type (live/stranded/bycaught) but not animal group (mammal/bird/fish) was observed. These data indicate that antibiotic resistance is widespread in marine vertebrates, and they may be important reservoirs of antibiotic-resistant bacteria in the marine environment.


Subject(s)
Bacteria/isolation & purification , Birds/microbiology , Drug Resistance, Bacterial , Mammals/microbiology , Animals , Bacteria/drug effects , Environmental Microbiology , Microbial Sensitivity Tests , New England
15.
Dis Aquat Organ ; 81(1): 13-38, 2008 Aug 19.
Article in English | MEDLINE | ID: mdl-18828560

ABSTRACT

Surveillance of zoonotic pathogens in marine birds and mammals in the Northwest Atlantic revealed a diversity of zoonotic agents. We found amplicons to sequences from Brucella spp., Leptospira spp., Giardia spp. and Cryptosporidium spp. in both marine mammals and birds. Avian influenza was detected in a harp seal and a herring gull. Routine aerobic and anaerobic culture showed a broad range of bacteria resistant to multiple antibiotics. Of 1460 isolates, 797 were tested for resistance, and 468 were resistant to one or more anti-microbials. 73% (341/468) were resistant to 1-4 drugs and 27% (128/468) resistant to 5-13 drugs. The high prevalence of resistance suggests that many of these isolates could have been acquired from medical and agricultural sources and inter-microbial gene transfer. Combining birds and mammals, 45% (63/141) of stranded and 8% (2/26) of by-caught animals in this study exhibited histopathological and/or gross pathological findings associated with the presence of these pathogens. Our findings indicate that marine mammals and birds in the Northwest Atlantic are reservoirs for potentially zoonotic pathogens, which they may transmit to beachgoers, fishermen and wildlife health personnel. Conversely, zoonotic pathogens found in marine vertebrates may have been acquired via contamination of coastal waters by sewage, run-off and agricultural and medical waste. In either case these animals are not limited by political boundaries and are therefore important indicators of regional and global ocean health.


Subject(s)
Birds/microbiology , Birds/parasitology , Cetacea/microbiology , Cetacea/parasitology , Sharks/microbiology , Sharks/parasitology , Animals , Bacteria/classification , Bacteria/isolation & purification , Disease Reservoirs/microbiology , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Disease Vectors , Eukaryota/classification , Eukaryota/isolation & purification , Orthomyxoviridae/isolation & purification , Seasons , Viruses/classification , Viruses/isolation & purification
16.
Dis Aquat Organ ; 81(1): 39-51, 2008 Aug 19.
Article in English | MEDLINE | ID: mdl-18828561

ABSTRACT

Giardia intestinalis is a microbial eukaryotic parasite that causes diarrheal disease in humans and other vertebrates worldwide. The negative effect on quality of life and economics caused by G. intestinalis may be increased by its potential status as a zoonosis, or a disease that can be transmitted from animals to humans. The zoonotic potential of G. intestinalis has been implied for over 2 decades, with human-infecting genotypes (belonging to the 2 major subgroups, Assemblages A and B) occurring in wildlife and domesticated animals. There are recent reports of G. intestinalis in shellfish, seals, sea lions and whales, suggesting that marine animals are also potential reservoirs of human disease. However, the prevalence, genetic diversity and effect of G. intestinalis in marine environments and the role that marine animals play in transmission of this parasite to humans are relatively unexplored. Here, we provide the first thorough molecular characterization of G. intestinalis in marine vertebrates. Using a multi-locus sequencing approach, we identify human-infecting G. intestinalis haplotypes of both Assemblages A and B in the fecal material of dolphins, porpoises, seals, herring gulls Larus argentatus, common eiders Somateria mollissima and a thresher shark Alopias vulpinus. Our results indicate that G. intestinalis is prevalent in marine ecosystems, and a wide range of marine hosts capable of harboring zoonotic forms of this parasite exist. The presence of G. intestinalis in marine ecosystems raises concerns about how this disease might be transmitted among different host species.


Subject(s)
Genetic Variation , Giardia lamblia/classification , Giardia lamblia/genetics , Giardiasis/veterinary , Haplotypes , Zoonoses/parasitology , Animals , Caniformia , Disease Reservoirs , Feces/microbiology , Giardiasis/parasitology , Phylogeny , Protozoan Proteins/genetics
17.
Ecohealth ; 5(4): 426-41, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19294469

ABSTRACT

During the past century, anthropogenic activities have altered the distribution of mercury (Hg) on the earth's surface. The impacts of such alterations to the natural cycle of Hg can be minimized through coordinated management, policy decisions, and legislative regulations. An ability to quantitatively measure environmental Hg loadings and spatiotemporal trends of their fate in the environment is critical for science-based decision making. Here, we outline a Hg monitoring program for temperate estuarine and marine ecosystems on the Atlantic Coast of North America. This framework follows a similar, previously developed plan for freshwater and terrestrial ecosystems in the U.S. Methylmercury (MeHg) is the toxicologically relevant form of Hg, and its ability to bioaccumulate in organisms and biomagnify in food webs depends on numerous biological and physicochemical factors that affect its production, transport, and fate. Therefore, multiple indicators are needed to fully characterize potential changes of Hg loadings in the environment and MeHg bioaccumulation through the different marine food webs. In addition to a description of how to monitor environmental Hg loads for air, sediment, and water, we outline a species-specific matrix of biotic indicators that include shellfish and other invertebrates, fish, birds and mammals. Such a Hg monitoring template is applicable to coastal areas across the Northern Hemisphere and is transferable to arctic and tropical marine ecosystems. We believe that a comprehensive approach provides an ability to best detect spatiotemporal Hg trends for both human and ecological health, and concurrently identify food webs and species at greatest risk to MeHg toxicity.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Atlantic Ocean , Birds , Fishes , Invertebrates , Mammals , North America
SELECTION OF CITATIONS
SEARCH DETAIL
...