Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Neurol ; 10: 246, 2019.
Article in English | MEDLINE | ID: mdl-30972003

ABSTRACT

The neuropathology of traumatic brain injury (TB) is diverse, including primary injury to neurons, axons, glial cells, vascular structures, and secondary processes, such as edema and inflammation that vary between individual patients. Traumatic microvascular injury is an important endophenotype of TBI-related injury. We studied patients who sustained a TBI requiring ER evaluation and had an MRI performed within 48 h of injury. We classified patients into 3 groups based on their MRI findings: (1) those that had evidence of traumatic microvascular injury on susceptibility or diffusion weighted MRI sequences without frank hemorrhage [Traumatic Vascular Injury (TVI) group; 20 subjects]. (2) those who had evidence of intraparenchymal, subdural, epidural, or subarachnoid hemorrhage [Traumatic Hemorrhage (TH) group; 26 subjects], and (3) those who had no traumatic injuries detected by MRI [MRI-negative group; 30 subjects]. We then measured plasma protein biomarkers of vascular injury [von Willebrand Factor (vWF) or cellular fibronectin (cFn)] and axonal injury (phosphorylated neurofilament heavy chain; pNF-H). We found that the TVI group was characterized by decreased expression of plasma vWF (p < 0.05 compared to MRI-negative group; p < 0.00001 compared to TH group) ≤48 h after injury. cFN was no different between groups ≤48 h after injury, but was increased in the TVI group compared to the MRI-negative (p < 0.00001) and TH (p < 0.00001) groups when measured >48 h from injury. pNF-H was increased in both the TH and TVI groups compared to the MRI-negative group ≤48 h from injury. When we used the MRI grouping and molecular biomarkers in a model to predict Glasgow Outcome Scale-Extended (GOS-E) score at 30-90 days, we found that inclusion of the imaging data and biomarkers substantially improved the ability to predict a good outcome over clinical information alone. These data indicate that there is a distinct, vascular-predominant endophenotype in a subset of patients who sustain a TBI and that these injuries are characterized by a specific biomarker profile. Further work to will be needed to determine whether these biomarkers can be useful as predictive and pharmacodynamic biomarkers for vascular-directed therapies after TBI.

2.
Pharmgenomics Pers Med ; 11: 127-137, 2018.
Article in English | MEDLINE | ID: mdl-30100750

ABSTRACT

BACKGROUND: Non-vitamin K oral anticoagulants (NOACs) are commonly used for prophylaxis of venous thromboembolism (VTE) in orthopedic patients. Despite known safety and high potency of NOACs, potential interactions of NOACs with genetic polymorphisms are poorly understood. Dabigatran etexilate is one of the most commonly prescribed direct thrombin inhibitors for the prevention of VTE. The objectives of this study were to assess the effect of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) polymorphisms on dabigatran pharmacokinetics in patients after total knee arthroplasty. PATIENTS AND METHODS: A total of 60 patients, aged 37-81 years, who underwent surgery for knee replacement have been included in the study. VTE prophylaxis was conducted via administration of dabigatran etexilate 220 mg once daily. Genotyping for carrier state of polymorphic variants such as rs1045642 and rs4148738 of the ABCB1 gene and rs2244613 of the CES1 gene was carried out using real-time polymerase chain reaction (PCR). We also measured the peak and trough concentrations of plasma dabigatran by using high-performance liquid chromatography (HPLC). RESULTS: Our study revealed that TT genotype of rs1045642 polymorphism of the ABCB1 gene was associated with higher dabigatran equilibrium peak concentrations and the higher risk of bleeding than the presence of CC genotype (p<0.008). There was no statistically significant genotype-dependent difference in the trough concentrations between rs1045642 and rs4148738 of the ABCB1 gene and rs2244613 of the CES1 gene. CONCLUSION: Our findings indicate that the polymorphisms of ABCB1 rs1045642 may have a prominent contribution to the safety of dabigatran in patients after knee surgery. Moreover, TT genotype may be associated with the higher risk of hemorrhagic complications in this population. There were no influence of polymorphism of ABCB1 rs4148738 and CES1 rs2244613 on dabigatran peak and through concentrations. Larger studies are needed to confirm our observations.

3.
Front Neurol ; 9: 527, 2018.
Article in English | MEDLINE | ID: mdl-30022968

ABSTRACT

This study seeks to quantitatively assess evolution of traumatic ICHs over the first 24 h and investigate its relationship with functional outcome. Early expansion of traumatic intracranial hematoma (ICH) is common, but previous studies have focused on the high density (blood) component. Hemostatic therapies may increase the risk of peri-hematoma infarction and associated increased cytotoxic edema. Assessing the magnitude and evolution of ICH and edema represented by high and low density components on computerized tomography (CT) may be informative for designing therapies targeted at traumatic ICH. CT scans from participants in the COBRIT (Citicoline Brain Injury Trial) study were analyzed using MIPAV software. CT scans from patients with non-surgical intraparenchymal ICHs at presentation and approximately 24 h later (±12 h) were selected. Regions of high density and low density were quantitatively measured. The relationship between volumes of high and low density were compared to several outcome measures, including Glasgow Outcome Score-Extended (GOSE) and Disability Rating Score (DRS). Paired scans from 84 patients were analyzed. The median time between the first and second scan was 22.79 h (25%ile 20.11 h; 75%ile 27.49 h). Over this time frame, hematoma and edema volumes increased >50% in 34 (40%) and 46 (55%) respectively. The correlation between the two components was low (r = 0.39, p = 0.002). There was a weak correlation between change in edema volume and GOSE at 6 months (r = 0.268, p = 0.037), change in edema volume and DRS at 3 and 6 months (r = -0.248, p = 0.037 and r = 0.358, p = 0.005, respectively), change in edema volume and COWA at 6 months (r = 0.272, p = 0.049), and between final edema volume and COWA at 6 months (r = 0.302, p = 0.028). To conclude, both high density and low density components of traumatic ICHs expand significantly in the first 2 days after TBI. In our study, there does not appear to be a relationship between hematoma volume or hematoma expansion and functional outcome, while there is a weak relationship between edema expansion and functional outcome.

4.
J Neurosci Res ; 96(4): 487-500, 2018 04.
Article in English | MEDLINE | ID: mdl-28463430

ABSTRACT

Traumatic brain injuries (TBIs) pose a massive burden of disease and continue to be a leading cause of morbidity and mortality throughout the world. A major obstacle in developing effective treatments is the lack of comprehensive understanding of the underlying mechanisms that mediate tissue damage and recovery after TBI. As such, our work aims to highlight the development of a novel experimental platform capable of fully characterizing the underlying pathobiology that unfolds after TBI. This platform encompasses an empirically optimized multiplex immunohistochemistry staining and imaging system customized to screen for a myriad of biomarkers required to comprehensively evaluate the extent of neuroinflammation, neural tissue damage, and repair in response to TBI. Herein, we demonstrate that our multiplex biomarker screening platform is capable of evaluating changes in both the topographical location and functional states of resident and infiltrating cell types that play a role in neuropathology after controlled cortical impact injury to the brain in male Sprague-Dawley rats. Our results demonstrate that our multiplex biomarker screening platform lays the groundwork for the comprehensive characterization of changes that occur within the brain after TBI. Such work may ultimately lead to the understanding of the governing pathobiology of TBI, thereby fostering the development of novel therapeutic interventions tailored to produce optimal tissue protection, repair, and/or regeneration with minimal side effects, and may ultimately find utility in a wide variety of other neurological injuries, diseases, and disorders that share components of TBI pathobiology.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Immunohistochemistry/methods , Neuroimaging/methods , Animals , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers/metabolism , Brain/physiopathology , Brain Injuries, Traumatic/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Male , Oligodendroglia/metabolism , Oligodendroglia/pathology , Rats, Sprague-Dawley , Tongue Diseases/metabolism , Tongue Diseases/pathology
5.
J Neurotrauma ; 34(1): 66-73, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27312416

ABSTRACT

Glial fibrillary acidic protein (GFAP), microtubule-associated protein tau, and amyloid ß peptide (Aß42) have been proposed as diagnostic and prognostic biomarkers in traumatic brain injury (TBI). Single molecule array (Simoa) is a novel technology that employs highly sensitive immunoassays for accurate measurements of candidate biomarkers found at low concentration in biological fluids. Our objective was to trace the trajectory of tau, GFAP, and Aß42 levels in plasma from the acute through subacute stages after TBI, compared with controls. Samples from 34 TBI subjects enrolled in the Citicoline Brain Injury Treatment Trial (COBRIT) were studied. Injury severity was assessed by Glasgow Coma Scale (GCS) and admission CT. Glasgow Outcome Scale Extended (GOSE) was assessed 6 months after injury. Plasma was collected within 24 h (Day 0), and 30 and 90 days after the TBI. Plasma collected from 69 healthy volunteers was used for comparison. At every time point, increases were noted in plasma GFAP (p < 0.0001 for all comparisons), tau (p < 0.0001, p < 0.0001, and p = 0.0044, at Days 0, 30, and 90, respectively), and Aß42 (p < 0.001, p < 0.0001, and p = 0.0203, respectively) in TBI cases compared with controls. The levels were maximal at Day 0 for GFAP and tau and at Day 30 for Aß42. Area under curve (AUC) analyses for Day 0 GFAP and tau were excellent for discrimination of complicated mild TBI (cmTBI) from controls (0.936 and 0.901, correspondingly). Discriminant component analysis (DCA) for all three biomarkers at Days 0 and 30 differentiated controls from cmTBI (91.1% and 89.7% correctly classified, at each time point). Duration of post-traumatic amnesia (PTA) correlated weakly with tau levels at 30 days (Spearman's r = 0.40; 95% CI 0.0003-0.60, p = 0.044). The Marshall CT Grade on admission correlated weakly with Day 30 tau levels (Spearman's r = 0.41; 95% CI 0.04-0.68, p = 0.027). Day 30 Aß42 correlated with GOSE (standardized ß -0.486, p = 0.042). GFAP, tau and Aß42 were increased up to 90 days after TBI compared with controls. Total tau levels correlated with clinical and radiological variables of TBI severity. Plasma Aß42 correlated with clinical outcome. Combination of all three biomarkers at Days 0 and 30 can be used to differentiate controls from cmTBI populations, and may be useful as biomarkers of TBI in both acute and subacute phases.


Subject(s)
Amyloid beta-Peptides/blood , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/diagnostic imaging , Glial Fibrillary Acidic Protein/blood , Peptide Fragments/blood , tau Proteins/blood , Adult , Biomarkers/blood , Brain Injuries, Traumatic/drug therapy , Cytidine Diphosphate Choline/therapeutic use , Female , Humans , Male , Middle Aged , Nootropic Agents/therapeutic use , Plasma/metabolism , Time Factors , Young Adult
6.
Brain Inj ; 31(2): 174-184, 2017.
Article in English | MEDLINE | ID: mdl-27936952

ABSTRACT

BACKGROUND: Non-contrast head computer tomography (CT) is widely used to evaluate eligibility of patients after acute traumatic brain injury (TBI) for clinical trials. The NINDS Common Data Elements (CDEs) TBI were developed to standardize collection of CT variables. The objectives of this study were to train research assistants (RAs) to rate CDEs and then to evaluate their performance. The aim was to assess inter-rater reliability (IRR) of CDEs between trained RAs and a neurologist and to evaluate applicability of CDEs in acute and sub-acute TBI to test the feasibility of using CDE CT ratings in future trials and ultimately in clinical practice. The second aim was to confirm that the ratings of CDEs reflect pathophysiological events after TBI. METHODS AND RESULTS: First, a manual was developed for application of the CDEs, which was used to rate brain CTs (n = 100). An excellent agreement was found in combined kappas between RAs on admission and on 24-hour follow-up CTs (Iota = 0.803 and 0.787, respectively). Good IRR (kappa > 0.61) was shown for six CDEs on admissions and for seven CDEs on follow-up CTs. Low IRR (kappa < 0.4) was determined for five CDEs on admission and for four CDEs on follow-up CT. Combined IRR of each assistant with the neurologist were good on admission (Iota = 0.613 and 0.787) and excellent on follow-up CT (Iota = 0.906 and 0.977). Second, Principal Component Analysis (PCA) was applied to cluster the rated CDEs (n = 255) and five major components were found that explain 53% of the variance. CONCLUSIONS: CT CDEs are useful in clinical studies of TBI. Trained RAs can reliably collect variables. PCA identifies CDE clusters with clinical and biologic plausibility. ABBREVIATIONS: RA, research assistant; CT, Cranial Tomography; TBI, Traumatic Brain Injury; CDE, Common Data Elements; IRR, inter-rater reliability; PCA, Principal Component Analysis; GCS, Glasgow Coma Scale; R, rater; CI, confidence interval; CCC, Concordance correlation coefficient; IVH, Intraventricular haemorrhage; DCA, Discriminant Component analysis; SAH, Subarachnoid Haemorrhage.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain/diagnostic imaging , Tomography, X-Ray Computed , Common Data Elements , Humans , Neuroimaging , Reproducibility of Results , Retrospective Studies
7.
Diagnostics (Basel) ; 6(4)2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27763536

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of death and disability around the world. The lack of validated biomarkers for TBI is a major impediment to developing effective therapies and improving clinical practice, as well as stimulating much work in this area. In this review, we focus on different settings of TBI management where blood or cerebrospinal fluid (CSF) biomarkers could be utilized for predicting clinically-relevant consequences and guiding management decisions. Requirements that the biomarker must fulfill differ based on the intended context of use (CoU). Specifically, we focus on fluid biomarkers in order to: (1) identify patients who may require acute neuroimaging (cranial computerized tomography (CT) or magnetic resonance imaging (MRI); (2) select patients at risk for secondary brain injury processes; (3) aid in counseling patients about their symptoms at discharge; (4) identify patients at risk for developing postconcussive syndrome (PCS), posttraumatic epilepsy (PTE) or chronic traumatic encephalopathy (CTE); (5) predict outcomes with respect to poor or good recovery; (6) inform counseling as to return to work (RTW) or to play. Despite significant advances already made from biomarker-based studies of TBI, there is an immediate need for further large-scale studies focused on identifying and innovating sensitive and reliable TBI biomarkers. These studies should be designed with the intended CoU in mind.

9.
Exp Neurol ; 275 Pt 3: 353-366, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26048614

ABSTRACT

Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI.


Subject(s)
Brain Injuries/pathology , Brain/blood supply , Brain/pathology , Cerebrovascular Circulation , Vascular System Injuries/pathology , Animals , Cerebrovascular Circulation/physiology , Humans , Microcirculation/physiology
10.
Biomark Med ; 9(7): 625-37, 2015.
Article in English | MEDLINE | ID: mdl-26174838

ABSTRACT

AIMS: Endothelial progenitor cells (EPCs) are markers of vascular repair. Increased numbers of circulating endothelial cells (ECs) are associated with endothelial damage. MATERIALS & METHODS: We enumerated EPC-EC by using Enrichment kit with addition of anti-human CD146-PE/Cy7 from peripheral blood mononuclear cell (PBMC) isolated either by red blood cell (RBC) lysing solution or by Ficoll centrifugation, and from fresh and preserved samples. PBMCs were quantified by flow cytometry. RESULTS: RBC lysis yielded higher percentage of PBMC (p = 0.0242) and higher numbers of PBMC/ml (p = 0.0039) than Ficoll. Absolute numbers of CD34(+)CD133(+)VEGFR2(+) and CD146(+)CD34(+)VEGFR2(+) were higher (p = 0.0117 for both), when isolated by RBC lysis than by Ficoll, when no difference in other subsets was found. Cryopreservation at -160°C and -80°C and short-term preservation at room temperature decreased EPC-EC. CONCLUSIONS: Our data support use of fresh samples and isolation of PBMC from human blood by RBC lysis for enumeration of EPC and EC.


Subject(s)
Cryopreservation , Endothelial Cells/cytology , Leukocytes, Mononuclear/cytology , Stem Cells/cytology , AC133 Antigen , Adult , Aged , Antigens, CD/metabolism , Antigens, CD34/metabolism , CD146 Antigen/metabolism , Erythrocytes/cytology , Female , Ficoll/chemistry , Flow Cytometry , Glycoproteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Peptides/metabolism , Stem Cells/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
11.
J Transl Med ; 9: 145, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21871109

ABSTRACT

BACKGROUND AND PURPOSE: Both endothelial progenitor cells (EPC) and markers of neuroinflammation are candidate biomarkers for stroke severity and outcome prediction. A relationship between EPC and neuroinflammatory markers in early stroke is not fully elucidated. The objectives were to investigate correlations between EPC and neuroinflammation markers (adhesion molecules ICAM-1, VCAM-1, E-selectin, tumor necrosis factor (TNF)-α, interleukin (IL)-6, endothelin (ET)-1, markers of tissue injury (matrix metalloproteinases (MMP)-9 and tissue inhibitor of matrix metalloproteinases (TIMP)-1) in early stroke patients. METHODS: We prospectively recruited symptomatic patients with ischemic cerebrovascular disease. We assessed stroke severity by using of acute (diffusion-weighted imaging (DWI) and final lesion volumes (fluid attenuated inversion recovery (FLAIR). We measured serum soluble ICAM-1, VCAM-1, E-selectin, MMP-9, TIMP-1 and plasma TNF-α, IL-6, ET-1 by ELISA, and quantified EPC in mononuclear fraction of peripheral blood on days 1 and 3 in 17 patients (mean(SD) age 62(14), with admission National Institutes of Health Stroke Scale (NIHSS) 10(8)) selected from 175 patients with imaging confirmed ischemic stroke. Non-parametric statistics, univariate and multivariate analysis were used. RESULTS: Only ICAM-1 inversely correlated with EPC subset CD133+CD34+ on day 1 (Spearman r = -0.6, p < 0.01) and on day 3 (r = -0.967, p < 0.001). This correlation remained significant after adjustment for age and NIHSS (beta -0.992, p < 0.004), for glucose and systolic blood pressure (beta -0.86, p < 0.005), and for white blood cells and hematocrit (beta -1.057, p < 0.0001) on day 3. MMP-9 (r = 0.509, p < 0.04) and MMP-9/TIMP-1 (r = 0.59, p < 0.013) on day 1 correlated with acute lesion volume. Both IL-6 (r = 0.624, p < 0.01) and MMP-9/TIMP-1 (r = 0.56, p < 0.02) correlated with admission NIHSS. CONCLUSION: Our study showed that high ICAM-1 is associated with low CD133+CD34+subset of EPC. Biomarkers of neuroinflammation may predict tissue injury and stroke severity in early ischemia.


Subject(s)
Antigens, CD34/metabolism , Antigens, CD/metabolism , Brain Ischemia/blood , Cell Movement , Glycoproteins/metabolism , Intercellular Adhesion Molecule-1/blood , Peptides/metabolism , Stem Cells/metabolism , Stroke/blood , AC133 Antigen , Biomarkers/metabolism , Brain Ischemia/complications , Brain Ischemia/pathology , Demography , Endothelial Cells/metabolism , Female , Humans , Male , Matrix Metalloproteinase 9/blood , Middle Aged , Risk Factors , Solubility , Stroke/complications , Stroke/drug therapy , Stroke/pathology , Time Factors , Tissue Inhibitor of Metalloproteinase-1/blood
12.
Stroke ; 42(3): 618-25, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21257825

ABSTRACT

BACKGROUND AND PURPOSE: Endothelial progenitor cells (EPC) are important participants of neovascularization and are mobilized through signaling with stromal-derived factor (SDF-1α), vascular endothelial growth factor (VEGF), granulocyte colony-stimulating factor, and stem cell factor. The association between EPC levels and these growth factors (GF) in acute stroke has not been previously established. We aimed to determine the association between EPC and these GF, and to elucidate a relationship between these GF and stroke severity in acute stroke patients. METHODS: Seventeen patients were selected from 175 patients with imaging-confirmed acute ischemic stroke. EPC were quantified using CD34, CD133, and VEGF-R2 markers. Plasma VEGF, SDF-1α, granulocyte colony-stimulating factor, and stem cell factor were determined by enzyme-linked immunosorbent assay on days 1 and 3, and brain MRI was performed at baseline and on days 1 and 5 after the stroke onset. RESULTS: Levels of SDF-1α strongly (r=0.6) correlated with the numbers of EPC subsets CD133(+)VEFG-R2(+) (P<0.004), CD34(+)VEGF-R2(+) (P<0.01), and CD34(+)CD133(+)VEGF-R2(+) (P<0.01) on day 1. Stem cell factor strongly (r=0.5) correlated with CD133(+)VEGF-R2(+) (P<0.05). SDF-1α moderately inversely (r=-0.49) correlated with baseline diffusion-weighted imaging lesion volumes (P<0.04). Median levels of SDF-1α (1561 pg/mL) increased (P<0.04) on day 3 compared to day 1 (1379 pg/mL). Similarly, VEGF at day 3 (95 pg/mL) increased (P<0.03) compared to day 1 (64 pg/mL). CONCLUSIONS: These results indicate that SDF-1α and stem cell factor correlate with an increase in EPC early in ischemic stroke patients.


Subject(s)
Brain Ischemia/blood , Chemokine CXCL12/blood , Endothelial Cells/metabolism , Stem Cells/metabolism , Stroke/blood , Aged , Biomarkers/blood , Brain Ischemia/pathology , Cohort Studies , Female , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Stroke/pathology
13.
BMC Neurol ; 6: 46, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17177982

ABSTRACT

BACKGROUND: A minority of stroke patients is eligible for thrombolytic therapy. Small pilot case series have hinted that elevation of incident arterial blood pressure might be associated with a favorable prognosis either in acute or subacute stroke. However, these patients were not considered for thrombolytic therapy and were not followed - up systematically. We used pharmacologically induced hypertension in a stroke patient with middle cerebral artery (MCA) occlusion ineligible for thrombolysis that was followed-up by radiological, clinical and functional outcome assessment. CASE PRESENTATION: A patient with acute embolic MCA occlusion producing a large, ischemic penumbra confirmed by perfusion CT was treated by induced hypertension with phenylephrine started within 4 h of admission. Increase in the mean arterial pressure by 20% led to a reduction of neurological deficit by 3 points on the National Institute of Stroke Scale. MRI and CT scans performed during phenylephrine infusion showed the presence of limited subcortical and cortical infarct changes that were clearly less extensive than the perfusion deficit in the brain perfusion CT at baseline, found in the absence of MCA patency. No complications due to induced hypertension therapy occurred. Moderate functional improvement up to modified Rankin scale 2 at follow up took place. CONCLUSION: Induced hypertension in acute ischemic stroke seems clinically feasible and may be beneficial in selected normo- or hypotensive stroke patients not eligible for thrombolytic recanalization therapy.


Subject(s)
Infarction, Middle Cerebral Artery/drug therapy , Phenylephrine/administration & dosage , Stroke/prevention & control , Acute Disease , Aged , Female , Humans , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/diagnosis , Stroke/etiology , Thrombolytic Therapy , Treatment Outcome , Vasoconstrictor Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...